Carbothermic Reduction of Ore-Coal Composite Pellets in a Tall Pellets Bed

Recently, increasing attention has been paid to alternative ironmaking processes due to the desire for sustainable development. Aiming to develop a new direct reduction technology, the paired straight hearth (PSH) furnace process, the carbothermic reduction of ore-coal composite pellets in a tall pe...

Full description

Bibliographic Details
Main Authors: Xin Jiang, Guangen Ding, He Guo, Qiangjian Gao, Fengman Shen
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/8/12/550
Description
Summary:Recently, increasing attention has been paid to alternative ironmaking processes due to the desire for sustainable development. Aiming to develop a new direct reduction technology, the paired straight hearth (PSH) furnace process, the carbothermic reduction of ore-coal composite pellets in a tall pellets bed was investigated at the lab-scale in the present work. The experimental results show that, under the present experimental conditions, when the height of the pellets bed is 80 mm (16&#8315;18 mm each layer, and 5 layers), the optimal amount of carbon to add is C/O = 0.95. Addition of either more or less carbon does not benefit the production of high quality direct reduced iron (DRI). The longer reduction time (60 min) may result in more molten slag in the top layer of DRI, which does not benefit the actual operation. At 50 min, the metallization degree could be up to 85.24%. When the experiment was performed using 5 layers of pellets (about 80 mm in height) and at 50 min duration, the productivity of metallic iron could reach 55.41 kg-MFe/m<sup>2</sup>&#183;h (or 75.26 kg-DRI/m<sup>2</sup>&#183;h). Therefore, compared with a traditional shallow bed (one or two layers), the metallization degree and productivity of DRI can be effectively increased in a tall pellets bed. It should be pointed out that the pellets bed and the temperature should be increased simultaneously. The present investigation may give some guidance for the commercial development of the PSH process in the future.
ISSN:2075-163X