A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes

Static conditions represent an important shortcoming of many in vitro experiments on the cellular uptake of nanoparticles. Here, we present a versatile microfluidic device based on acoustic streaming induced by surface acoustic waves (SAWs). The device offers a convenient method for introducing flui...

Full description

Bibliographic Details
Main Authors: Florian G. Strobl, Dominik Breyer, Phillip Link, Adriano A. Torrano, Christoph Bräuchle, Matthias F. Schneider, Achim Wixforth
Format: Article
Language:English
Published: Beilstein-Institut 2015-02-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.6.41
id doaj-aaddb9440bc3436ebc2eed115a76d6e2
record_format Article
spelling doaj-aaddb9440bc3436ebc2eed115a76d6e22020-11-24T20:46:35ZengBeilstein-InstitutBeilstein Journal of Nanotechnology2190-42862015-02-016141441910.3762/bjnano.6.412190-4286-6-41A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumesFlorian G. Strobl0Dominik Breyer1Phillip Link2Adriano A. Torrano3Christoph Bräuchle4Matthias F. Schneider5Achim Wixforth6Lehrstuhl für Experimentalphysik I, Universität Augsburg, 86159 Augsburg, GermanyLehrstuhl für Experimentalphysik I, Universität Augsburg, 86159 Augsburg, GermanyLehrstuhl für Experimentalphysik I, Universität Augsburg, 86159 Augsburg, GermanyNanosystems Initiative Munich NIM, Schellingstr. 4, 80799 Munich, GermanyNanosystems Initiative Munich NIM, Schellingstr. 4, 80799 Munich, GermanyDepartment for Mechanical Engineering, Boston University, Boston, MA 02215, USALehrstuhl für Experimentalphysik I, Universität Augsburg, 86159 Augsburg, GermanyStatic conditions represent an important shortcoming of many in vitro experiments on the cellular uptake of nanoparticles. Here, we present a versatile microfluidic device based on acoustic streaming induced by surface acoustic waves (SAWs). The device offers a convenient method for introducing fluid motion in standard cell culture chambers and for mimicking capillary blood flow. We show that shear rates over the whole physiological range in sample volumes as small as 200 μL can be achieved. A precise characterization method for the induced flow profile is presented and the influence of flow on the uptake of Pt-decorated CeO2 particles by endothelial cells (HMEC-1) is demonstrated. Under physiological flow conditions the particle uptake rates for this system are significantly lower than at low shear conditions. This underlines the vital importance of the fluidic environment for cellular uptake mechanisms.https://doi.org/10.3762/bjnano.6.41acoustic streamingcellular uptakeflownanoparticlessedimentationshearsurface acoustic wave (SAW)
collection DOAJ
language English
format Article
sources DOAJ
author Florian G. Strobl
Dominik Breyer
Phillip Link
Adriano A. Torrano
Christoph Bräuchle
Matthias F. Schneider
Achim Wixforth
spellingShingle Florian G. Strobl
Dominik Breyer
Phillip Link
Adriano A. Torrano
Christoph Bräuchle
Matthias F. Schneider
Achim Wixforth
A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes
Beilstein Journal of Nanotechnology
acoustic streaming
cellular uptake
flow
nanoparticles
sedimentation
shear
surface acoustic wave (SAW)
author_facet Florian G. Strobl
Dominik Breyer
Phillip Link
Adriano A. Torrano
Christoph Bräuchle
Matthias F. Schneider
Achim Wixforth
author_sort Florian G. Strobl
title A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes
title_short A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes
title_full A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes
title_fullStr A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes
title_full_unstemmed A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes
title_sort surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes
publisher Beilstein-Institut
series Beilstein Journal of Nanotechnology
issn 2190-4286
publishDate 2015-02-01
description Static conditions represent an important shortcoming of many in vitro experiments on the cellular uptake of nanoparticles. Here, we present a versatile microfluidic device based on acoustic streaming induced by surface acoustic waves (SAWs). The device offers a convenient method for introducing fluid motion in standard cell culture chambers and for mimicking capillary blood flow. We show that shear rates over the whole physiological range in sample volumes as small as 200 μL can be achieved. A precise characterization method for the induced flow profile is presented and the influence of flow on the uptake of Pt-decorated CeO2 particles by endothelial cells (HMEC-1) is demonstrated. Under physiological flow conditions the particle uptake rates for this system are significantly lower than at low shear conditions. This underlines the vital importance of the fluidic environment for cellular uptake mechanisms.
topic acoustic streaming
cellular uptake
flow
nanoparticles
sedimentation
shear
surface acoustic wave (SAW)
url https://doi.org/10.3762/bjnano.6.41
work_keys_str_mv AT floriangstrobl asurfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
AT dominikbreyer asurfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
AT philliplink asurfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
AT adrianoatorrano asurfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
AT christophbrauchle asurfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
AT matthiasfschneider asurfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
AT achimwixforth asurfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
AT floriangstrobl surfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
AT dominikbreyer surfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
AT philliplink surfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
AT adrianoatorrano surfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
AT christophbrauchle surfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
AT matthiasfschneider surfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
AT achimwixforth surfaceacousticwavedrivenmicropumpforparticleuptakeinvestigationunderphysiologicalflowconditionsinverysmallvolumes
_version_ 1716812300535463936