Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields

We report efficient vortex pinning in thickness-modulated tungsten–carbon-based (W–C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W–C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leadin...

Full description

Bibliographic Details
Main Authors: Ismael García Serrano, Javier Sesé, Isabel Guillamón, Hermann Suderow, Sebastián Vieira, Manuel Ricardo Ibarra, José María De Teresa
Format: Article
Language:English
Published: Beilstein-Institut 2016-11-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.7.162
id doaj-ab0438eadaf6491ab5da7be1e0480240
record_format Article
spelling doaj-ab0438eadaf6491ab5da7be1e04802402020-11-24T21:12:08ZengBeilstein-InstitutBeilstein Journal of Nanotechnology2190-42862016-11-01711698170810.3762/bjnano.7.1622190-4286-7-162Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fieldsIsmael García Serrano0Javier Sesé1Isabel Guillamón2Hermann Suderow3Sebastián Vieira4Manuel Ricardo Ibarra5José María De Teresa6Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, SpainLaboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, SpainLaboratorio de Bajas Temperaturas, Unidad Asociada UAM/CSIC, Instituto Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Departa-mento de Física de la Materia Condensada, Universidad Autónoma de Madrid, SpainLaboratorio de Bajas Temperaturas, Unidad Asociada UAM/CSIC, Instituto Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Departa-mento de Física de la Materia Condensada, Universidad Autónoma de Madrid, SpainLaboratorio de Bajas Temperaturas, Unidad Asociada UAM/CSIC, Instituto Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Departa-mento de Física de la Materia Condensada, Universidad Autónoma de Madrid, SpainLaboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, SpainLaboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, SpainWe report efficient vortex pinning in thickness-modulated tungsten–carbon-based (W–C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W–C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.2 T) in a broad temperature range due to commensurability effects between the pinning potential and the vortex lattice. The results show that the combination of single-step FIBID fabrication of superconducting nanostructures with built-in artificial pinning landscapes and the small intrinsic random pinning potential of this material produces strong periodic pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current).https://doi.org/10.3762/bjnano.7.162focused ion beam induced depositionmagnetotransportsuperconductivityvortex lattice
collection DOAJ
language English
format Article
sources DOAJ
author Ismael García Serrano
Javier Sesé
Isabel Guillamón
Hermann Suderow
Sebastián Vieira
Manuel Ricardo Ibarra
José María De Teresa
spellingShingle Ismael García Serrano
Javier Sesé
Isabel Guillamón
Hermann Suderow
Sebastián Vieira
Manuel Ricardo Ibarra
José María De Teresa
Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields
Beilstein Journal of Nanotechnology
focused ion beam induced deposition
magnetotransport
superconductivity
vortex lattice
author_facet Ismael García Serrano
Javier Sesé
Isabel Guillamón
Hermann Suderow
Sebastián Vieira
Manuel Ricardo Ibarra
José María De Teresa
author_sort Ismael García Serrano
title Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields
title_short Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields
title_full Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields
title_fullStr Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields
title_full_unstemmed Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields
title_sort thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields
publisher Beilstein-Institut
series Beilstein Journal of Nanotechnology
issn 2190-4286
publishDate 2016-11-01
description We report efficient vortex pinning in thickness-modulated tungsten–carbon-based (W–C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W–C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.2 T) in a broad temperature range due to commensurability effects between the pinning potential and the vortex lattice. The results show that the combination of single-step FIBID fabrication of superconducting nanostructures with built-in artificial pinning landscapes and the small intrinsic random pinning potential of this material produces strong periodic pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current).
topic focused ion beam induced deposition
magnetotransport
superconductivity
vortex lattice
url https://doi.org/10.3762/bjnano.7.162
work_keys_str_mv AT ismaelgarciaserrano thicknessmodulatedtungstencarbonsuperconductingnanostructuresgrownbyfocusedionbeaminduceddepositionforvortexpinninguptohighmagneticfields
AT javiersese thicknessmodulatedtungstencarbonsuperconductingnanostructuresgrownbyfocusedionbeaminduceddepositionforvortexpinninguptohighmagneticfields
AT isabelguillamon thicknessmodulatedtungstencarbonsuperconductingnanostructuresgrownbyfocusedionbeaminduceddepositionforvortexpinninguptohighmagneticfields
AT hermannsuderow thicknessmodulatedtungstencarbonsuperconductingnanostructuresgrownbyfocusedionbeaminduceddepositionforvortexpinninguptohighmagneticfields
AT sebastianvieira thicknessmodulatedtungstencarbonsuperconductingnanostructuresgrownbyfocusedionbeaminduceddepositionforvortexpinninguptohighmagneticfields
AT manuelricardoibarra thicknessmodulatedtungstencarbonsuperconductingnanostructuresgrownbyfocusedionbeaminduceddepositionforvortexpinninguptohighmagneticfields
AT josemariadeteresa thicknessmodulatedtungstencarbonsuperconductingnanostructuresgrownbyfocusedionbeaminduceddepositionforvortexpinninguptohighmagneticfields
_version_ 1716751471011168257