Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis.

Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups o...

Full description

Bibliographic Details
Main Authors: Annereinou R Dijkstra, Wynand Alkema, Marjo J C Starrenburg, Jeroen Hugenholtz, Sacha A F T van Hijum, Peter A Bron
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5156439?pdf=render
id doaj-ab2b36d244a14d6ead20bfedc6cd71fd
record_format Article
spelling doaj-ab2b36d244a14d6ead20bfedc6cd71fd2020-11-25T00:42:28ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-011112e016794410.1371/journal.pone.0167944Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis.Annereinou R DijkstraWynand AlkemaMarjo J C StarrenburgJeroen HugenholtzSacha A F T van HijumPeter A BronRecently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L. lactis strains IL1403, KF147 and SK11, which have previously been demonstrated to display highly diverse robustness phenotypes. These strains were subjected to an identical fermentation regime as was performed earlier for strain MG1363 and consisted of twelve conditions, varying in the level of salt and/or oxygen, as well as fermentation temperature and pH. In the exponential phase of growth, cells were harvested for transcriptome analysis and assessment of heat and oxidative stress survival phenotypes. The variation in fermentation conditions resulted in differences in heat and oxidative stress survival of up to five 10-log units. Effects of the fermentation conditions on stress survival of the L. lactis strains were typically strain-dependent, although the fermentation conditions had mainly similar effects on the growth characteristics of the different strains. By association of the transcriptomes and robustness phenotypes highly strain-specific transcriptome signatures for robustness towards heat and oxidative stress were identified, indicating that multiple mechanisms exist to increase robustness and, as a consequence, robustness of each strain requires individual optimization. However, a relatively small overlap in the transcriptome responses of the strains was also identified and this generic transcriptome signature included genes previously associated with stress (ctsR and lplL) and novel genes, including nanE and genes encoding transport proteins. The transcript levels of these genes can function as indicators of robustness and could aid in selection of fermentation parameters, potentially resulting in more optimal robustness during spray drying.http://europepmc.org/articles/PMC5156439?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Annereinou R Dijkstra
Wynand Alkema
Marjo J C Starrenburg
Jeroen Hugenholtz
Sacha A F T van Hijum
Peter A Bron
spellingShingle Annereinou R Dijkstra
Wynand Alkema
Marjo J C Starrenburg
Jeroen Hugenholtz
Sacha A F T van Hijum
Peter A Bron
Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis.
PLoS ONE
author_facet Annereinou R Dijkstra
Wynand Alkema
Marjo J C Starrenburg
Jeroen Hugenholtz
Sacha A F T van Hijum
Peter A Bron
author_sort Annereinou R Dijkstra
title Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis.
title_short Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis.
title_full Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis.
title_fullStr Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis.
title_full_unstemmed Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis.
title_sort strain-dependent transcriptome signatures for robustness in lactococcus lactis.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2016-01-01
description Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L. lactis strains IL1403, KF147 and SK11, which have previously been demonstrated to display highly diverse robustness phenotypes. These strains were subjected to an identical fermentation regime as was performed earlier for strain MG1363 and consisted of twelve conditions, varying in the level of salt and/or oxygen, as well as fermentation temperature and pH. In the exponential phase of growth, cells were harvested for transcriptome analysis and assessment of heat and oxidative stress survival phenotypes. The variation in fermentation conditions resulted in differences in heat and oxidative stress survival of up to five 10-log units. Effects of the fermentation conditions on stress survival of the L. lactis strains were typically strain-dependent, although the fermentation conditions had mainly similar effects on the growth characteristics of the different strains. By association of the transcriptomes and robustness phenotypes highly strain-specific transcriptome signatures for robustness towards heat and oxidative stress were identified, indicating that multiple mechanisms exist to increase robustness and, as a consequence, robustness of each strain requires individual optimization. However, a relatively small overlap in the transcriptome responses of the strains was also identified and this generic transcriptome signature included genes previously associated with stress (ctsR and lplL) and novel genes, including nanE and genes encoding transport proteins. The transcript levels of these genes can function as indicators of robustness and could aid in selection of fermentation parameters, potentially resulting in more optimal robustness during spray drying.
url http://europepmc.org/articles/PMC5156439?pdf=render
work_keys_str_mv AT annereinourdijkstra straindependenttranscriptomesignaturesforrobustnessinlactococcuslactis
AT wynandalkema straindependenttranscriptomesignaturesforrobustnessinlactococcuslactis
AT marjojcstarrenburg straindependenttranscriptomesignaturesforrobustnessinlactococcuslactis
AT jeroenhugenholtz straindependenttranscriptomesignaturesforrobustnessinlactococcuslactis
AT sachaaftvanhijum straindependenttranscriptomesignaturesforrobustnessinlactococcuslactis
AT peterabron straindependenttranscriptomesignaturesforrobustnessinlactococcuslactis
_version_ 1725282313280946176