Selenium-Doped Hydroxyapatite Nanocrystals–Synthesis, Physicochemical Properties and Biological Significance

Hydroxyapatites (HAs), as materials with a similar structure to bone minerals, play a key role in biomaterials engineering. They have been applied as bone substitute materials and as coatings for metallic implants, which facilitates their osseointegration. One of the beneficial characteristics of HA...

Full description

Bibliographic Details
Main Authors: Kamil Pajor, Lukasz Pajchel, Barbara Kolodziejska, Joanna Kolmas
Format: Article
Language:English
Published: MDPI AG 2018-04-01
Series:Crystals
Subjects:
Online Access:http://www.mdpi.com/2073-4352/8/5/188
Description
Summary:Hydroxyapatites (HAs), as materials with a similar structure to bone minerals, play a key role in biomaterials engineering. They have been applied as bone substitute materials and as coatings for metallic implants, which facilitates their osseointegration. One of the beneficial characteristics of HA, when used to create biocompatible materials with improved physicochemical or biological properties, is its capacity for ionic substitution. The aim of the study was to present the current state of knowledge about HAs containing selenate ions IV or VI. The enrichment of HAs with selenium aims to create a material with advantageous effects on bone tissue metabolism, as well as having anticancer and antibacterial activity. The work is devoted to both methods of obtaining Se-HA and an evaluation of its chemical structure and physicochemical properties. In addition, the biological activity of such materials in vitro and in vivo is discussed.
ISSN:2073-4352