Broiler gut microbiota and expressions of gut barrier genes affected by cereal type and phytogenic inclusion

The present study assessed the effects of cereal type and the inclusion level of a phytogenic feed additive (PFA) on broiler ileal and cecal gut microbiota composition, volatile fatty acids (VFA) and gene expression of toll like receptors (TLR), tight junction proteins, mucin 2 (MUC2) and secretory...

Full description

Bibliographic Details
Main Authors: Vasileios Paraskeuas, Konstantinos C. Mountzouris
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2019-03-01
Series:Animal Nutrition
Online Access:http://www.sciencedirect.com/science/article/pii/S2405654518302099
id doaj-ab715ed6c8694edabbadd6d725854c69
record_format Article
spelling doaj-ab715ed6c8694edabbadd6d725854c692021-03-02T10:16:24ZengKeAi Communications Co., Ltd.Animal Nutrition2405-65452019-03-01512231Broiler gut microbiota and expressions of gut barrier genes affected by cereal type and phytogenic inclusionVasileios Paraskeuas0Konstantinos C. Mountzouris1Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 11855, Athens, GreeceCorresponding author.; Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 11855, Athens, GreeceThe present study assessed the effects of cereal type and the inclusion level of a phytogenic feed additive (PFA) on broiler ileal and cecal gut microbiota composition, volatile fatty acids (VFA) and gene expression of toll like receptors (TLR), tight junction proteins, mucin 2 (MUC2) and secretory immunoglobulin A (sIgA). Depending on cereal type (i.e. maize or wheat) and PFA inclusion level (i.e. 0, 100 and 150 mg/kg diet), 450 one-day-old male broilers were allocated in 6 treatments according to a 2 × 3 factorial arrangement with 5 replicates of 15 broilers each, for 42 d. Significant interactions (P ≤ 0.05) between cereal type and PFA were shown for cecal digesta Bacteroides and Clostridium cluster XIVa, ileal digesta propionic and branched VFA, ileal sIgA gene expression, as well as cecal digesta branched and other VFA molar ratios. Cereal type affected the cecal microbiota composition. In particular, wheat-fed broilers had higher levels of mucosa-associated Lactobacillus (PCT = 0.007) and digesta Bifidobacterium (PCT < 0.001), as well as lower levels of total bacteria (PCT = 0.004) and Clostridia clusters I, IV and XIVa (PCT ≤ 0.05), compared with maize-fed ones. In addition, cereal type gave differences in fermentation intensity (PCT = 0.021) and in certain individual VFA molar ratios. Wheat-fed broilers had higher (P ≤ 0.05) ileal zonula occluden 2 (ZO-2) and lower ileal and cecal TLR2 and sIgA levels, compared with maize-fed broilers. On the other hand, PFA inclusion at 150 mg/kg had a stimulating effect on microbial fermentation at ileum and a retarding effect in ceca with additional variable VFA molar patterns. In addition, PFA inclusion at 100 mg/kg increased the ileal mucosa expression of claudin 5 (CLDN5) (PPFA = 0.023) and MUC2 (PPFA = 0.001) genes, and at 150 mg/kg decreased cecal TLR2 (PPFA = 0.022) gene expression compared with the un-supplemented controls. In conclusion, cereal type and PFA affected in combination and independently broiler gut microbiota composition and metabolic activity as well as the expression of critical gut barrier genes including TLR2. Further exploitation of these properties in cases of stressor challenges is warranted. Keywords: Maize, Wheat, Phytogenics, Gut microbiota, Toll like receptors, Gut barrierhttp://www.sciencedirect.com/science/article/pii/S2405654518302099
collection DOAJ
language English
format Article
sources DOAJ
author Vasileios Paraskeuas
Konstantinos C. Mountzouris
spellingShingle Vasileios Paraskeuas
Konstantinos C. Mountzouris
Broiler gut microbiota and expressions of gut barrier genes affected by cereal type and phytogenic inclusion
Animal Nutrition
author_facet Vasileios Paraskeuas
Konstantinos C. Mountzouris
author_sort Vasileios Paraskeuas
title Broiler gut microbiota and expressions of gut barrier genes affected by cereal type and phytogenic inclusion
title_short Broiler gut microbiota and expressions of gut barrier genes affected by cereal type and phytogenic inclusion
title_full Broiler gut microbiota and expressions of gut barrier genes affected by cereal type and phytogenic inclusion
title_fullStr Broiler gut microbiota and expressions of gut barrier genes affected by cereal type and phytogenic inclusion
title_full_unstemmed Broiler gut microbiota and expressions of gut barrier genes affected by cereal type and phytogenic inclusion
title_sort broiler gut microbiota and expressions of gut barrier genes affected by cereal type and phytogenic inclusion
publisher KeAi Communications Co., Ltd.
series Animal Nutrition
issn 2405-6545
publishDate 2019-03-01
description The present study assessed the effects of cereal type and the inclusion level of a phytogenic feed additive (PFA) on broiler ileal and cecal gut microbiota composition, volatile fatty acids (VFA) and gene expression of toll like receptors (TLR), tight junction proteins, mucin 2 (MUC2) and secretory immunoglobulin A (sIgA). Depending on cereal type (i.e. maize or wheat) and PFA inclusion level (i.e. 0, 100 and 150 mg/kg diet), 450 one-day-old male broilers were allocated in 6 treatments according to a 2 × 3 factorial arrangement with 5 replicates of 15 broilers each, for 42 d. Significant interactions (P ≤ 0.05) between cereal type and PFA were shown for cecal digesta Bacteroides and Clostridium cluster XIVa, ileal digesta propionic and branched VFA, ileal sIgA gene expression, as well as cecal digesta branched and other VFA molar ratios. Cereal type affected the cecal microbiota composition. In particular, wheat-fed broilers had higher levels of mucosa-associated Lactobacillus (PCT = 0.007) and digesta Bifidobacterium (PCT < 0.001), as well as lower levels of total bacteria (PCT = 0.004) and Clostridia clusters I, IV and XIVa (PCT ≤ 0.05), compared with maize-fed ones. In addition, cereal type gave differences in fermentation intensity (PCT = 0.021) and in certain individual VFA molar ratios. Wheat-fed broilers had higher (P ≤ 0.05) ileal zonula occluden 2 (ZO-2) and lower ileal and cecal TLR2 and sIgA levels, compared with maize-fed broilers. On the other hand, PFA inclusion at 150 mg/kg had a stimulating effect on microbial fermentation at ileum and a retarding effect in ceca with additional variable VFA molar patterns. In addition, PFA inclusion at 100 mg/kg increased the ileal mucosa expression of claudin 5 (CLDN5) (PPFA = 0.023) and MUC2 (PPFA = 0.001) genes, and at 150 mg/kg decreased cecal TLR2 (PPFA = 0.022) gene expression compared with the un-supplemented controls. In conclusion, cereal type and PFA affected in combination and independently broiler gut microbiota composition and metabolic activity as well as the expression of critical gut barrier genes including TLR2. Further exploitation of these properties in cases of stressor challenges is warranted. Keywords: Maize, Wheat, Phytogenics, Gut microbiota, Toll like receptors, Gut barrier
url http://www.sciencedirect.com/science/article/pii/S2405654518302099
work_keys_str_mv AT vasileiosparaskeuas broilergutmicrobiotaandexpressionsofgutbarriergenesaffectedbycerealtypeandphytogenicinclusion
AT konstantinoscmountzouris broilergutmicrobiotaandexpressionsofgutbarriergenesaffectedbycerealtypeandphytogenicinclusion
_version_ 1724237304321540096