Influence of Multi-Pass Hot Extrusion on Microstructure and Mechanical Properties of the Mg–4Zn–1.2Y–0.8Nd Alloy

In the present research, a Mg–4Zn–1.2Y–0.8Nd (wt.%) alloy was heat treated and hot extruded with different passes. XRD, SEM, TEM and tensile testing were employed to characterize the microstructure evolution and mechanical properties. The results exhibited that the semi-continuously distributed W-Mg...

Full description

Bibliographic Details
Main Authors: Liyuan Sheng, Xingru Zhang, Hui Zhao, Beining Du, Yufeng Zheng, Tingfei Xi
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/4/425
id doaj-abc4df88bc3d45debbaea120d40d18c6
record_format Article
spelling doaj-abc4df88bc3d45debbaea120d40d18c62021-04-15T23:01:26ZengMDPI AGCrystals2073-43522021-04-011142542510.3390/cryst11040425Influence of Multi-Pass Hot Extrusion on Microstructure and Mechanical Properties of the Mg–4Zn–1.2Y–0.8Nd AlloyLiyuan Sheng0Xingru Zhang1Hui Zhao2Beining Du3Yufeng Zheng4Tingfei Xi5Shenzhen Institute, Peking University, Shenzhen 518057, ChinaShenzhen Institute, Peking University, Shenzhen 518057, ChinaSchool of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, ChinaPKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen 518057, ChinaShenzhen Institute, Peking University, Shenzhen 518057, ChinaShenzhen Institute, Peking University, Shenzhen 518057, ChinaIn the present research, a Mg–4Zn–1.2Y–0.8Nd (wt.%) alloy was heat treated and hot extruded with different passes. XRD, SEM, TEM and tensile testing were employed to characterize the microstructure evolution and mechanical properties. The results exhibited that the semi-continuously distributed W-Mg<sub>3</sub>Zn<sub>3</sub>Y<sub>2</sub> phases formed the skeleton structure which separated the α-Mg matrix into a dual-size grain structure. In addition, the Mg<sub>24</sub>Y<sub>5</sub>, Mg<sub>41</sub>Nd<sub>5</sub> and Y<sub>2</sub>O<sub>3</sub> phase was also observed in the heat-treated alloy. Moreover, it was found that the Mg24Y5 phase had an orientation relationship with the α-Mg matrix of <inline-formula>α<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">[</mo><mn>111</mn><mo stretchy="false">]</mo></mrow><mrow><mi>Mg</mi><mn>24</mn><mi mathvariant="normal">Y</mi><mn>5</mn></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo stretchy="false">[</mo><mn>0001</mn><mo stretchy="false">]</mo></mrow><mrow><mi mathvariant="sans-serif">α</mi><mo>-</mo><mi>Mg</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula>α<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mo stretchy="false">)</mo></mrow><mrow><mi>Mg</mi><mn>24</mn><mi mathvariant="normal">Y</mi><mn>5</mn></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo stretchy="false">(</mo><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow><mrow><mi mathvariant="sans-serif">α</mi><mo>-</mo><mi>Mg</mi></mrow></msub></mrow></semantics></math></inline-formula>, and the Mg<sub>41</sub>Nd<sub>5</sub> phase had an orientation relationship with the α-Mg matrix of <inline-formula>α<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">[</mo><mn>001</mn><mo stretchy="false">]</mo></mrow><mrow><mi>Mg</mi><mn>41</mn><mi>Nd</mi><mn>5</mn></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo stretchy="false">[</mo><mn>0001</mn><mo stretchy="false">]</mo></mrow><mrow><mi mathvariant="sans-serif">α</mi><mo>-</mo><mi>Mg</mi></mrow></msub></mrow></semantics></math></inline-formula>. The one-pass hot extrusion segmented the secondary phases into small ones and refined the α-Mg matrix. Due to the partly recrystallization and crystal orientation difference, the coarse elongated grain surrounded by fine recrystallized grain and secondary phase was the main feature of the one-pass hot extruded alloy. Furthermore, the secondary phases exhibited the linear distribution along the direction of hot extrusion. The two-pass hot extrusion refined the secondary phase and matrix further, which produced the ultrafine α-Mg matrix with uniform grain size and a well redistributed secondary phase. Due to the microstructure optimization by the multi-pass hot extrusion, the ductility and strength of the Mg–Zn–Y–Nd alloy were well improved, especially the two-pass hot extruded alloy which was significant improved in ductility and strength simultaneously.https://www.mdpi.com/2073-4352/11/4/425hot extrusionMg–Zn–Y–Nd alloymicrostructuremechanical properties
collection DOAJ
language English
format Article
sources DOAJ
author Liyuan Sheng
Xingru Zhang
Hui Zhao
Beining Du
Yufeng Zheng
Tingfei Xi
spellingShingle Liyuan Sheng
Xingru Zhang
Hui Zhao
Beining Du
Yufeng Zheng
Tingfei Xi
Influence of Multi-Pass Hot Extrusion on Microstructure and Mechanical Properties of the Mg–4Zn–1.2Y–0.8Nd Alloy
Crystals
hot extrusion
Mg–Zn–Y–Nd alloy
microstructure
mechanical properties
author_facet Liyuan Sheng
Xingru Zhang
Hui Zhao
Beining Du
Yufeng Zheng
Tingfei Xi
author_sort Liyuan Sheng
title Influence of Multi-Pass Hot Extrusion on Microstructure and Mechanical Properties of the Mg–4Zn–1.2Y–0.8Nd Alloy
title_short Influence of Multi-Pass Hot Extrusion on Microstructure and Mechanical Properties of the Mg–4Zn–1.2Y–0.8Nd Alloy
title_full Influence of Multi-Pass Hot Extrusion on Microstructure and Mechanical Properties of the Mg–4Zn–1.2Y–0.8Nd Alloy
title_fullStr Influence of Multi-Pass Hot Extrusion on Microstructure and Mechanical Properties of the Mg–4Zn–1.2Y–0.8Nd Alloy
title_full_unstemmed Influence of Multi-Pass Hot Extrusion on Microstructure and Mechanical Properties of the Mg–4Zn–1.2Y–0.8Nd Alloy
title_sort influence of multi-pass hot extrusion on microstructure and mechanical properties of the mg–4zn–1.2y–0.8nd alloy
publisher MDPI AG
series Crystals
issn 2073-4352
publishDate 2021-04-01
description In the present research, a Mg–4Zn–1.2Y–0.8Nd (wt.%) alloy was heat treated and hot extruded with different passes. XRD, SEM, TEM and tensile testing were employed to characterize the microstructure evolution and mechanical properties. The results exhibited that the semi-continuously distributed W-Mg<sub>3</sub>Zn<sub>3</sub>Y<sub>2</sub> phases formed the skeleton structure which separated the α-Mg matrix into a dual-size grain structure. In addition, the Mg<sub>24</sub>Y<sub>5</sub>, Mg<sub>41</sub>Nd<sub>5</sub> and Y<sub>2</sub>O<sub>3</sub> phase was also observed in the heat-treated alloy. Moreover, it was found that the Mg24Y5 phase had an orientation relationship with the α-Mg matrix of <inline-formula>α<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">[</mo><mn>111</mn><mo stretchy="false">]</mo></mrow><mrow><mi>Mg</mi><mn>24</mn><mi mathvariant="normal">Y</mi><mn>5</mn></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo stretchy="false">[</mo><mn>0001</mn><mo stretchy="false">]</mo></mrow><mrow><mi mathvariant="sans-serif">α</mi><mo>-</mo><mi>Mg</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula>α<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mo stretchy="false">)</mo></mrow><mrow><mi>Mg</mi><mn>24</mn><mi mathvariant="normal">Y</mi><mn>5</mn></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo stretchy="false">(</mo><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mo stretchy="false">)</mo></mrow><mrow><mi mathvariant="sans-serif">α</mi><mo>-</mo><mi>Mg</mi></mrow></msub></mrow></semantics></math></inline-formula>, and the Mg<sub>41</sub>Nd<sub>5</sub> phase had an orientation relationship with the α-Mg matrix of <inline-formula>α<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">[</mo><mn>001</mn><mo stretchy="false">]</mo></mrow><mrow><mi>Mg</mi><mn>41</mn><mi>Nd</mi><mn>5</mn></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo stretchy="false">[</mo><mn>0001</mn><mo stretchy="false">]</mo></mrow><mrow><mi mathvariant="sans-serif">α</mi><mo>-</mo><mi>Mg</mi></mrow></msub></mrow></semantics></math></inline-formula>. The one-pass hot extrusion segmented the secondary phases into small ones and refined the α-Mg matrix. Due to the partly recrystallization and crystal orientation difference, the coarse elongated grain surrounded by fine recrystallized grain and secondary phase was the main feature of the one-pass hot extruded alloy. Furthermore, the secondary phases exhibited the linear distribution along the direction of hot extrusion. The two-pass hot extrusion refined the secondary phase and matrix further, which produced the ultrafine α-Mg matrix with uniform grain size and a well redistributed secondary phase. Due to the microstructure optimization by the multi-pass hot extrusion, the ductility and strength of the Mg–Zn–Y–Nd alloy were well improved, especially the two-pass hot extruded alloy which was significant improved in ductility and strength simultaneously.
topic hot extrusion
Mg–Zn–Y–Nd alloy
microstructure
mechanical properties
url https://www.mdpi.com/2073-4352/11/4/425
work_keys_str_mv AT liyuansheng influenceofmultipasshotextrusiononmicrostructureandmechanicalpropertiesofthemg4zn12y08ndalloy
AT xingruzhang influenceofmultipasshotextrusiononmicrostructureandmechanicalpropertiesofthemg4zn12y08ndalloy
AT huizhao influenceofmultipasshotextrusiononmicrostructureandmechanicalpropertiesofthemg4zn12y08ndalloy
AT beiningdu influenceofmultipasshotextrusiononmicrostructureandmechanicalpropertiesofthemg4zn12y08ndalloy
AT yufengzheng influenceofmultipasshotextrusiononmicrostructureandmechanicalpropertiesofthemg4zn12y08ndalloy
AT tingfeixi influenceofmultipasshotextrusiononmicrostructureandmechanicalpropertiesofthemg4zn12y08ndalloy
_version_ 1721526004745240576