Modern systems for monitoring the stress-strain state of hazardous power generating facilities

The paper considers the issue of effectively increasing the level of operational reliability of power generating nuclear and hydraulic facilities. Over the past 20 years, the number of accidents at these facilities has been growing. There are many factors affecting the collapse of structures, but, a...

Full description

Bibliographic Details
Main Authors: Zemlyansky Anatoly, Zhukov Alexander, Bulavina Daria
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/39/e3sconf_form2021_02008.pdf
Description
Summary:The paper considers the issue of effectively increasing the level of operational reliability of power generating nuclear and hydraulic facilities. Over the past 20 years, the number of accidents at these facilities has been growing. There are many factors affecting the collapse of structures, but, according to the authors, the lack of a monitoring system capable of fully assessing not only the stress-strain state, but also the so- called “residual” stresses of the material is the dominant direction of research. The same question is raised at the state level, as evidenced by the requirements of the STO, GOST and Federal laws, to which the authors refer below. The legislative prerequisites (requirements) for the creation of an improved system for monitoring critical structures, corresponding to the development trends of the construction industry, as well as the modernization of the existing fund are listed. The drawbacks and advantages of existing monitoring systems (strain gauge, string, fiber-optic sensors and acoustic emission systems) are analyzed in detail, and the general lack of the possibility of measuring, evaluating "residual" stresses in the material of structures is noted. A fundamentally new system for monitoring the stress-strain state of building structures and power equipment is proposed, which is based on the Foerster effect, a comparison is made with the existing systems described above. The main features and capabilities of the method are noted and options for use at highly important facilities are proposed.
ISSN:2267-1242