Route Selection Decision-Making in an Intermodal Transport Network Using Game Theory

Traveling through a transport network, or ordering and delivering packets, involves fundamental decision-making processes which can be approached by game theory: Rather than simply choosing a route, individuals need to evaluate routes in the presence of the congestion resulting from the decisions ma...

Full description

Bibliographic Details
Main Authors: Lucija Bukvić, Jasmina Pašagić Škrinjar, Borna Abramović, Vladislav Zitrický
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/13/8/4443
Description
Summary:Traveling through a transport network, or ordering and delivering packets, involves fundamental decision-making processes which can be approached by game theory: Rather than simply choosing a route, individuals need to evaluate routes in the presence of the congestion resulting from the decisions made by themselves and everyone else. In this paper, a game theory model for resolving route choices in transport network graphs is used. In the process of doing this, discovering a rather unexpected result known as Braess’s paradox, which shows that adding capacity to a network can sometimes actually cause congestion and an increase in transport costs. The decisions are made by non-cooperative players in a game theory environment known as prisoner’s dilemma. These methods are used to analyze routing problems by competing logistics operators on the transport network consisting of three Eastern Adriatic ports and an intermodal terminal in Budapest. The congestion game can be used in route selection regarding a decrease in transport costs for the carriers who are considered as rational players choosing the most sustainable solution.
ISSN:2071-1050