Phosphoproteome data from abscisic acid and ethylene treated Glycine max leaves

The data reported here are associated with the article “Comparative phosphoproteome analysis upon ethylene and abscisic acid treatment in Glycine max leaves” [1]. Phosphorylation plays a critical role in the regulation of the biological activities of proteins. However, phosphorylation-mediated regul...

Full description

Bibliographic Details
Main Authors: Ravi Gupta, Cheol Woo Min, Qingfeng Meng, Tae Hwan Jun, Ganesh Kumar Agrawal, Randeep Rakwal, Sun Tae Kim
Format: Article
Language:English
Published: Elsevier 2018-10-01
Series:Data in Brief
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340918308898
Description
Summary:The data reported here are associated with the article “Comparative phosphoproteome analysis upon ethylene and abscisic acid treatment in Glycine max leaves” [1]. Phosphorylation plays a critical role in the regulation of the biological activities of proteins. However, phosphorylation-mediated regulation of proteins and pathways involved in ethylene (ET) and abscisic acid (ABA) signaling is currently poorly understood. Therefore, we used a shotgun proteomics approach to identify the phosphopeptides and phosphoproteins in response to ET, ABA and combined ET+ABA treatments. Here, we present the Mass spectrometry, protein–protein interaction, Gene ontology and KEGG data associated with the ET and ABA signaling in soybean leaves [1].
ISSN:2352-3409