Preliminary investigation of thermal behaviour of PCM based latent heat thermal energy storage

Solid-liquid phase change is used to accumulate and release cold in latent heat thermal energy storage (LHTES) in order to reduce energy consumption of air cooling system in buildings. The storing capacity of the LHTES depends greatly on the exterior air temperatures during the summer nights. One ap...

Full description

Bibliographic Details
Main Authors: Pop Octavian G., Fechete Tutunaru Lucian, Bode Florin, Balan Mugur C.
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:E3S Web of Conferences
Online Access:https://doi.org/10.1051/e3sconf/20183201017
Description
Summary:Solid-liquid phase change is used to accumulate and release cold in latent heat thermal energy storage (LHTES) in order to reduce energy consumption of air cooling system in buildings. The storing capacity of the LHTES depends greatly on the exterior air temperatures during the summer nights. One approach in intensifying heat transfer is by increasing the air’s velocity. A LHTES was designed to be integrated in the air cooling system of a building located in Bucharest, during the month of July. This study presents a numerical investigation concerning the impact of air inlet temperatures and air velocity on the formation of solid PCM, on the cold storing capacity and energy consumption of the LHTES. The peak amount of accumulated cold is reached at different air velocities depending on air inlet temperature. For inlet temperatures of 14°C and 15°C, an increase of air velocity above 50% will not lead to higher amounts of cold being stored. For Bucharest during the hottest night of the year, a 100 % increase in air velocity will result in 5.02% more cold being stored, at an increase in electrical energy consumption of 25.30%, when compared to the reference values.
ISSN:2267-1242