PLANE-BASED REGISTRATION OF SEVERAL THOUSAND LASER SCANS ON STANDARD HARDWARE
The automatic registration of terrestrial laser scans appears to be a solved problem in science as well as in practice. However, this assumption is questionable especially in the context of large projects where an object of interest is described by several thousand scans. A critical issue inherently...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-05-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2/1207/2018/isprs-archives-XLII-2-1207-2018.pdf |
Summary: | The automatic registration of terrestrial laser scans appears to be a solved problem in science as well as in practice. However, this assumption is questionable especially in the context of large projects where an object of interest is described by several thousand scans. A critical issue inherently linked to this task is memory management especially if cloud-based registration approaches such as the ICP are being deployed. In order to process even thousands of scans on standard hardware a plane-based registration approach is applied. As a first step planar features are detected within the unregistered scans. This step drastically reduces the amount of data that has to be handled by the hardware. After determination of corresponding planar features a pairwise registration procedure is initiated based on a graph that represents topological relations among all scans. For every feature individual stochastic characteristics are computed that are consequently carried through the algorithm. Finally, a block adjustment is carried out that minimises the residuals between redundantly captured areas. The algorithm is demonstrated on a practical survey campaign featuring a historic town hall. In total, 4853 scans were registered on a standard PC with four processors (3.07 GHz) and 12 GB of RAM. |
---|---|
ISSN: | 1682-1750 2194-9034 |