Methacholine-Induced Variations in Airway Volume and the Slope of the Alveolar Capnogram Are Distinctly Associated with Airflow Limitation and Airway Closure.

Mechanisms driving alteration of lung function in response to inhalation of a methacholine aerosol are incompletely understood. To explore to what extent large and small airways contribute to airflow limitation and airway closure in this context, volumetric capnography was performed before (n = 93)...

Full description

Bibliographic Details
Main Authors: Laurent Plantier, Sylvain Marchand-Adam, Laurent Boyer, Camille Taillé, Christophe Delclaux
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4658077?pdf=render
id doaj-ad80cc0c1f7343b6b8108220adff30d8
record_format Article
spelling doaj-ad80cc0c1f7343b6b8108220adff30d82020-11-25T01:41:55ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-011011e014355010.1371/journal.pone.0143550Methacholine-Induced Variations in Airway Volume and the Slope of the Alveolar Capnogram Are Distinctly Associated with Airflow Limitation and Airway Closure.Laurent PlantierSylvain Marchand-AdamLaurent BoyerCamille TailléChristophe DelclauxMechanisms driving alteration of lung function in response to inhalation of a methacholine aerosol are incompletely understood. To explore to what extent large and small airways contribute to airflow limitation and airway closure in this context, volumetric capnography was performed before (n = 93) and after (n = 78) methacholine provocation in subjects with an intermediate clinical probability of asthma. Anatomical dead space (VDaw), reflecting large airway volume, and the slope of the alveolar capnogram (slope3), an index of ventilation heterogeneity linked to small airway dysfunction, were determined. At baseline, VDaw was positively correlated with lung volumes, FEV1 and peak expiratory flow, while slope3 was not correlated with any lung function index. Variations in VDaw and slope3 following methacholine stimulation were correlated to a small degree (R2 = -0.20). Multivariate regression analysis identified independent associations between variation in FEV1 and variations in both VDaw (Standardized Coefficient-SC = 0.66) and Slope3 (SC = 0.35). By contrast, variation in FVC was strongly associated with variations in VDaw (SC = 0.8) but not Slope3. Thus, alterations in the geometry and/or function of large and small airways were weakly correlated and contributed distinctly to airflow limitation. While both large and small airways contributed to airflow limitation as assessed by FEV1, airway closure as assessed by FVC reduction mostly involved the large airways.http://europepmc.org/articles/PMC4658077?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Laurent Plantier
Sylvain Marchand-Adam
Laurent Boyer
Camille Taillé
Christophe Delclaux
spellingShingle Laurent Plantier
Sylvain Marchand-Adam
Laurent Boyer
Camille Taillé
Christophe Delclaux
Methacholine-Induced Variations in Airway Volume and the Slope of the Alveolar Capnogram Are Distinctly Associated with Airflow Limitation and Airway Closure.
PLoS ONE
author_facet Laurent Plantier
Sylvain Marchand-Adam
Laurent Boyer
Camille Taillé
Christophe Delclaux
author_sort Laurent Plantier
title Methacholine-Induced Variations in Airway Volume and the Slope of the Alveolar Capnogram Are Distinctly Associated with Airflow Limitation and Airway Closure.
title_short Methacholine-Induced Variations in Airway Volume and the Slope of the Alveolar Capnogram Are Distinctly Associated with Airflow Limitation and Airway Closure.
title_full Methacholine-Induced Variations in Airway Volume and the Slope of the Alveolar Capnogram Are Distinctly Associated with Airflow Limitation and Airway Closure.
title_fullStr Methacholine-Induced Variations in Airway Volume and the Slope of the Alveolar Capnogram Are Distinctly Associated with Airflow Limitation and Airway Closure.
title_full_unstemmed Methacholine-Induced Variations in Airway Volume and the Slope of the Alveolar Capnogram Are Distinctly Associated with Airflow Limitation and Airway Closure.
title_sort methacholine-induced variations in airway volume and the slope of the alveolar capnogram are distinctly associated with airflow limitation and airway closure.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2015-01-01
description Mechanisms driving alteration of lung function in response to inhalation of a methacholine aerosol are incompletely understood. To explore to what extent large and small airways contribute to airflow limitation and airway closure in this context, volumetric capnography was performed before (n = 93) and after (n = 78) methacholine provocation in subjects with an intermediate clinical probability of asthma. Anatomical dead space (VDaw), reflecting large airway volume, and the slope of the alveolar capnogram (slope3), an index of ventilation heterogeneity linked to small airway dysfunction, were determined. At baseline, VDaw was positively correlated with lung volumes, FEV1 and peak expiratory flow, while slope3 was not correlated with any lung function index. Variations in VDaw and slope3 following methacholine stimulation were correlated to a small degree (R2 = -0.20). Multivariate regression analysis identified independent associations between variation in FEV1 and variations in both VDaw (Standardized Coefficient-SC = 0.66) and Slope3 (SC = 0.35). By contrast, variation in FVC was strongly associated with variations in VDaw (SC = 0.8) but not Slope3. Thus, alterations in the geometry and/or function of large and small airways were weakly correlated and contributed distinctly to airflow limitation. While both large and small airways contributed to airflow limitation as assessed by FEV1, airway closure as assessed by FVC reduction mostly involved the large airways.
url http://europepmc.org/articles/PMC4658077?pdf=render
work_keys_str_mv AT laurentplantier methacholineinducedvariationsinairwayvolumeandtheslopeofthealveolarcapnogramaredistinctlyassociatedwithairflowlimitationandairwayclosure
AT sylvainmarchandadam methacholineinducedvariationsinairwayvolumeandtheslopeofthealveolarcapnogramaredistinctlyassociatedwithairflowlimitationandairwayclosure
AT laurentboyer methacholineinducedvariationsinairwayvolumeandtheslopeofthealveolarcapnogramaredistinctlyassociatedwithairflowlimitationandairwayclosure
AT camilletaille methacholineinducedvariationsinairwayvolumeandtheslopeofthealveolarcapnogramaredistinctlyassociatedwithairflowlimitationandairwayclosure
AT christophedelclaux methacholineinducedvariationsinairwayvolumeandtheslopeofthealveolarcapnogramaredistinctlyassociatedwithairflowlimitationandairwayclosure
_version_ 1725038852140171264