Detecting frontotemporal dementia syndromes using MRI biomarkers
Background: Diagnosing frontotemporal dementia may be challenging. New methods for analysis of regional brain atrophy patterns on magnetic resonance imaging (MRI) could add to the diagnostic assessment. Therefore, we aimed to develop automated imaging biomarkers for differentiating frontotemporal de...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-01-01
|
Series: | NeuroImage: Clinical |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2213158219300610 |
id |
doaj-adb78c564df34938908e63a4cb7c434b |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Marie Bruun Juha Koikkalainen Hanneke F.M. Rhodius-Meester Marta Baroni Le Gjerum Mark van Gils Hilkka Soininen Anne M. Remes Päivi Hartikainen Gunhild Waldemar Patrizia Mecocci Frederik Barkhof Yolande Pijnenburg Wiesje M. van der Flier Steen G. Hasselbalch Jyrki Lötjönen Kristian S. Frederiksen |
spellingShingle |
Marie Bruun Juha Koikkalainen Hanneke F.M. Rhodius-Meester Marta Baroni Le Gjerum Mark van Gils Hilkka Soininen Anne M. Remes Päivi Hartikainen Gunhild Waldemar Patrizia Mecocci Frederik Barkhof Yolande Pijnenburg Wiesje M. van der Flier Steen G. Hasselbalch Jyrki Lötjönen Kristian S. Frederiksen Detecting frontotemporal dementia syndromes using MRI biomarkers NeuroImage: Clinical |
author_facet |
Marie Bruun Juha Koikkalainen Hanneke F.M. Rhodius-Meester Marta Baroni Le Gjerum Mark van Gils Hilkka Soininen Anne M. Remes Päivi Hartikainen Gunhild Waldemar Patrizia Mecocci Frederik Barkhof Yolande Pijnenburg Wiesje M. van der Flier Steen G. Hasselbalch Jyrki Lötjönen Kristian S. Frederiksen |
author_sort |
Marie Bruun |
title |
Detecting frontotemporal dementia syndromes using MRI biomarkers |
title_short |
Detecting frontotemporal dementia syndromes using MRI biomarkers |
title_full |
Detecting frontotemporal dementia syndromes using MRI biomarkers |
title_fullStr |
Detecting frontotemporal dementia syndromes using MRI biomarkers |
title_full_unstemmed |
Detecting frontotemporal dementia syndromes using MRI biomarkers |
title_sort |
detecting frontotemporal dementia syndromes using mri biomarkers |
publisher |
Elsevier |
series |
NeuroImage: Clinical |
issn |
2213-1582 |
publishDate |
2019-01-01 |
description |
Background: Diagnosing frontotemporal dementia may be challenging. New methods for analysis of regional brain atrophy patterns on magnetic resonance imaging (MRI) could add to the diagnostic assessment. Therefore, we aimed to develop automated imaging biomarkers for differentiating frontotemporal dementia subtypes from other diagnostic groups, and from one another. Methods: In this retrospective multicenter cohort study, we included 1213 patients (age 67 ± 9, 48% females) from two memory clinic cohorts: 116 frontotemporal dementia, 341 Alzheimer's disease, 66 Dementia with Lewy bodies, 40 vascular dementia, 104 other dementias, 229 mild cognitive impairment, and 317 subjective cognitive decline. Three MRI atrophy biomarkers were derived from the normalized volumes of automatically segmented cortical regions: 1) the anterior vs. posterior index, 2) the asymmetry index, and 3) the temporal pole left index. We used the following performance metrics: area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. To account for the low prevalence of frontotemporal dementia we pursued a high specificity of 95%. Cross-validation was used in assessing the performance. The generalizability was assessed in an independent cohort (n = 200). Results: The anterior vs. posterior index performed with an AUC of 83% for differentiation of frontotemporal dementia from all other diagnostic groups (Sensitivity = 59%, Specificity = 95%, positive likelihood ratio = 11.8, negative likelihood ratio = 0.4). The asymmetry index showed highest performance for separation of primary progressive aphasia and behavioral variant frontotemporal dementia (AUC = 85%, Sensitivity = 79%, Specificity = 92%, positive likelihood ratio = 9.9, negative likelihood ratio = 0.2), whereas the temporal pole left index was specific for detection of semantic variant primary progressive aphasia (AUC = 85%, Sensitivity = 82%, Specificity = 80%, positive likelihood ratio = 4.1, negative likelihood ratio = 0.2). The validation cohort provided corresponding results for the anterior vs. posterior index and temporal pole left index. Conclusion: This study presents three quantitative MRI biomarkers, which could provide additional information to the diagnostic assessment and assist clinicians in diagnosing frontotemporal dementia. Keywords: Dementia, Frontotemporal lobar degeneration, Differential diagnosis, Behavioral variant frontotemporal dementia, Primary progressive aphasia, MRI |
url |
http://www.sciencedirect.com/science/article/pii/S2213158219300610 |
work_keys_str_mv |
AT mariebruun detectingfrontotemporaldementiasyndromesusingmribiomarkers AT juhakoikkalainen detectingfrontotemporaldementiasyndromesusingmribiomarkers AT hannekefmrhodiusmeester detectingfrontotemporaldementiasyndromesusingmribiomarkers AT martabaroni detectingfrontotemporaldementiasyndromesusingmribiomarkers AT legjerum detectingfrontotemporaldementiasyndromesusingmribiomarkers AT markvangils detectingfrontotemporaldementiasyndromesusingmribiomarkers AT hilkkasoininen detectingfrontotemporaldementiasyndromesusingmribiomarkers AT annemremes detectingfrontotemporaldementiasyndromesusingmribiomarkers AT paivihartikainen detectingfrontotemporaldementiasyndromesusingmribiomarkers AT gunhildwaldemar detectingfrontotemporaldementiasyndromesusingmribiomarkers AT patriziamecocci detectingfrontotemporaldementiasyndromesusingmribiomarkers AT frederikbarkhof detectingfrontotemporaldementiasyndromesusingmribiomarkers AT yolandepijnenburg detectingfrontotemporaldementiasyndromesusingmribiomarkers AT wiesjemvanderflier detectingfrontotemporaldementiasyndromesusingmribiomarkers AT steenghasselbalch detectingfrontotemporaldementiasyndromesusingmribiomarkers AT jyrkilotjonen detectingfrontotemporaldementiasyndromesusingmribiomarkers AT kristiansfrederiksen detectingfrontotemporaldementiasyndromesusingmribiomarkers |
_version_ |
1725483672937693184 |
spelling |
doaj-adb78c564df34938908e63a4cb7c434b2020-11-24T23:49:10ZengElsevierNeuroImage: Clinical2213-15822019-01-0122Detecting frontotemporal dementia syndromes using MRI biomarkersMarie Bruun0Juha Koikkalainen1Hanneke F.M. Rhodius-Meester2Marta Baroni3Le Gjerum4Mark van Gils5Hilkka Soininen6Anne M. Remes7Päivi Hartikainen8Gunhild Waldemar9Patrizia Mecocci10Frederik Barkhof11Yolande Pijnenburg12Wiesje M. van der Flier13Steen G. Hasselbalch14Jyrki Lötjönen15Kristian S. Frederiksen16Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Corresponding author at: Danish Dementia Research Centre, Neuro Science Centre, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark.Combinostics Ltd., Tampere, FinlandAlzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the NetherlandsInstitute of Gerontology and Geriatrics, University of Perugia, Perugia, ItalyDanish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, DenmarkVTT Technical Research Center of Finland Ltd, Tampere, FinlandInstitute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland; Neurocenter, neurology, Kuopio University Hospital, Kuopio, FinlandUnit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland; Medical Research Center, Oulu University Hospital, Oulu, FinlandNeurocenter, neurology, Kuopio University Hospital, Kuopio, FinlandDanish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, DenmarkInstitute of Gerontology and Geriatrics, University of Perugia, Perugia, ItalyDepartment of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; UCL institutes of Neurology and Healthcare Engineering, London, UKAlzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the NetherlandsAlzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the NetherlandsDanish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, DenmarkCombinostics Ltd., Tampere, FinlandDanish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, DenmarkBackground: Diagnosing frontotemporal dementia may be challenging. New methods for analysis of regional brain atrophy patterns on magnetic resonance imaging (MRI) could add to the diagnostic assessment. Therefore, we aimed to develop automated imaging biomarkers for differentiating frontotemporal dementia subtypes from other diagnostic groups, and from one another. Methods: In this retrospective multicenter cohort study, we included 1213 patients (age 67 ± 9, 48% females) from two memory clinic cohorts: 116 frontotemporal dementia, 341 Alzheimer's disease, 66 Dementia with Lewy bodies, 40 vascular dementia, 104 other dementias, 229 mild cognitive impairment, and 317 subjective cognitive decline. Three MRI atrophy biomarkers were derived from the normalized volumes of automatically segmented cortical regions: 1) the anterior vs. posterior index, 2) the asymmetry index, and 3) the temporal pole left index. We used the following performance metrics: area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. To account for the low prevalence of frontotemporal dementia we pursued a high specificity of 95%. Cross-validation was used in assessing the performance. The generalizability was assessed in an independent cohort (n = 200). Results: The anterior vs. posterior index performed with an AUC of 83% for differentiation of frontotemporal dementia from all other diagnostic groups (Sensitivity = 59%, Specificity = 95%, positive likelihood ratio = 11.8, negative likelihood ratio = 0.4). The asymmetry index showed highest performance for separation of primary progressive aphasia and behavioral variant frontotemporal dementia (AUC = 85%, Sensitivity = 79%, Specificity = 92%, positive likelihood ratio = 9.9, negative likelihood ratio = 0.2), whereas the temporal pole left index was specific for detection of semantic variant primary progressive aphasia (AUC = 85%, Sensitivity = 82%, Specificity = 80%, positive likelihood ratio = 4.1, negative likelihood ratio = 0.2). The validation cohort provided corresponding results for the anterior vs. posterior index and temporal pole left index. Conclusion: This study presents three quantitative MRI biomarkers, which could provide additional information to the diagnostic assessment and assist clinicians in diagnosing frontotemporal dementia. Keywords: Dementia, Frontotemporal lobar degeneration, Differential diagnosis, Behavioral variant frontotemporal dementia, Primary progressive aphasia, MRIhttp://www.sciencedirect.com/science/article/pii/S2213158219300610 |