Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54

<p>It was hypothesized that using mineral dust emission climatologies in global chemistry climate models (GCCMs), i.e. prescribed monthly-mean dust emissions representative of a specific year, may lead to misrepresentations of strong dust burst events. This could result in a negative bias of m...

Full description

Bibliographic Details
Main Authors: C. G. Beer, J. Hendricks, M. Righi, B. Heinold, I. Tegen, S. Groß, D. Sauer, A. Walser, B. Weinzierl
Format: Article
Language:English
Published: Copernicus Publications 2020-09-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/13/4287/2020/gmd-13-4287-2020.pdf
id doaj-adbde67567994ef8a262815019c9e497
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author C. G. Beer
J. Hendricks
M. Righi
B. Heinold
I. Tegen
S. Groß
D. Sauer
D. Sauer
A. Walser
A. Walser
A. Walser
B. Weinzierl
spellingShingle C. G. Beer
J. Hendricks
M. Righi
B. Heinold
I. Tegen
S. Groß
D. Sauer
D. Sauer
A. Walser
A. Walser
A. Walser
B. Weinzierl
Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54
Geoscientific Model Development
author_facet C. G. Beer
J. Hendricks
M. Righi
B. Heinold
I. Tegen
S. Groß
D. Sauer
D. Sauer
A. Walser
A. Walser
A. Walser
B. Weinzierl
author_sort C. G. Beer
title Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54
title_short Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54
title_full Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54
title_fullStr Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54
title_full_unstemmed Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54
title_sort modelling mineral dust emissions and atmospheric dispersion with made3 in emac v2.54
publisher Copernicus Publications
series Geoscientific Model Development
issn 1991-959X
1991-9603
publishDate 2020-09-01
description <p>It was hypothesized that using mineral dust emission climatologies in global chemistry climate models (GCCMs), i.e. prescribed monthly-mean dust emissions representative of a specific year, may lead to misrepresentations of strong dust burst events. This could result in a negative bias of model dust concentrations compared to observations for these episodes. Here, we apply the aerosol microphysics submodel MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, third generation) as part of the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model. We employ two different representations of mineral dust emissions for our model simulations: (i) a prescribed monthly-mean climatology of dust emissions representative of the year 2000 and (ii) an online dust parametrization which calculates wind-driven mineral dust emissions at every model time step. We evaluate model results for these two dust representations by comparison with observations of aerosol optical depth from ground-based station data. The model results show a better agreement with the observations for strong dust burst events when using the online dust representation compared to the prescribed dust emissions setup. Furthermore, we analyse the effect of increasing the vertical and horizontal model resolution on the mineral dust properties in our model. We compare results from simulations with T42L31 and T63L31 model resolution (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">2.8</mn><msup><mi/><mo>∘</mo></msup><mo>×</mo><mn mathvariant="normal">2.8</mn><msup><mi/><mo>∘</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="6fdc9745d69e0420c80d291ff8b17367"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4287-2020-ie00001.svg" width="52pt" height="11pt" src="gmd-13-4287-2020-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1.9</mn><msup><mi/><mo>∘</mo></msup><mo>×</mo><mn mathvariant="normal">1.9</mn><msup><mi/><mo>∘</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="21cf9116af1569998bafb533c32b20c7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4287-2020-ie00002.svg" width="52pt" height="11pt" src="gmd-13-4287-2020-ie00002.png"/></svg:svg></span></span> in latitude and longitude, respectively; 31 vertical levels) with the reference setup (T42L19). The different model versions are evaluated against airborne in situ measurements performed during the SALTRACE mineral dust campaign (Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment, June–July 2013), i.e. observations of dust transported from the Sahara to the Caribbean. Results show that an increased horizontal and vertical model resolution is able to better represent the spatial distribution of airborne mineral dust, especially in the upper troposphere (above 400&thinsp;<span class="inline-formula">hPa</span>). Additionally, we analyse the effect of varying assumptions for the size distribution of emitted dust but find only a weak sensitivity concerning these changes. The results of this study will help to identify the model setup best suited for future studies and to further improve the representation of mineral dust particles in EMAC-MADE3.</p>
url https://gmd.copernicus.org/articles/13/4287/2020/gmd-13-4287-2020.pdf
work_keys_str_mv AT cgbeer modellingmineraldustemissionsandatmosphericdispersionwithmade3inemacv254
AT jhendricks modellingmineraldustemissionsandatmosphericdispersionwithmade3inemacv254
AT mrighi modellingmineraldustemissionsandatmosphericdispersionwithmade3inemacv254
AT bheinold modellingmineraldustemissionsandatmosphericdispersionwithmade3inemacv254
AT itegen modellingmineraldustemissionsandatmosphericdispersionwithmade3inemacv254
AT sgroß modellingmineraldustemissionsandatmosphericdispersionwithmade3inemacv254
AT dsauer modellingmineraldustemissionsandatmosphericdispersionwithmade3inemacv254
AT dsauer modellingmineraldustemissionsandatmosphericdispersionwithmade3inemacv254
AT awalser modellingmineraldustemissionsandatmosphericdispersionwithmade3inemacv254
AT awalser modellingmineraldustemissionsandatmosphericdispersionwithmade3inemacv254
AT awalser modellingmineraldustemissionsandatmosphericdispersionwithmade3inemacv254
AT bweinzierl modellingmineraldustemissionsandatmosphericdispersionwithmade3inemacv254
_version_ 1724670529529446400
spelling doaj-adbde67567994ef8a262815019c9e4972020-11-25T03:07:26ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032020-09-01134287430310.5194/gmd-13-4287-2020Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54C. G. Beer0J. Hendricks1M. Righi2B. Heinold3I. Tegen4S. Groß5D. Sauer6D. Sauer7A. Walser8A. Walser9A. Walser10B. Weinzierl11Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyLudwig-Maximilians-Universität München, Meteorologisches Institut, Munich, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyUniversity of Vienna, Faculty of Physics, Aerosol Physics and Environmental Physics, Vienna, AustriaLudwig-Maximilians-Universität München, Meteorologisches Institut, Munich, GermanyUniversity of Vienna, Faculty of Physics, Aerosol Physics and Environmental Physics, Vienna, Austria<p>It was hypothesized that using mineral dust emission climatologies in global chemistry climate models (GCCMs), i.e. prescribed monthly-mean dust emissions representative of a specific year, may lead to misrepresentations of strong dust burst events. This could result in a negative bias of model dust concentrations compared to observations for these episodes. Here, we apply the aerosol microphysics submodel MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, third generation) as part of the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model. We employ two different representations of mineral dust emissions for our model simulations: (i) a prescribed monthly-mean climatology of dust emissions representative of the year 2000 and (ii) an online dust parametrization which calculates wind-driven mineral dust emissions at every model time step. We evaluate model results for these two dust representations by comparison with observations of aerosol optical depth from ground-based station data. The model results show a better agreement with the observations for strong dust burst events when using the online dust representation compared to the prescribed dust emissions setup. Furthermore, we analyse the effect of increasing the vertical and horizontal model resolution on the mineral dust properties in our model. We compare results from simulations with T42L31 and T63L31 model resolution (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">2.8</mn><msup><mi/><mo>∘</mo></msup><mo>×</mo><mn mathvariant="normal">2.8</mn><msup><mi/><mo>∘</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="6fdc9745d69e0420c80d291ff8b17367"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4287-2020-ie00001.svg" width="52pt" height="11pt" src="gmd-13-4287-2020-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1.9</mn><msup><mi/><mo>∘</mo></msup><mo>×</mo><mn mathvariant="normal">1.9</mn><msup><mi/><mo>∘</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="21cf9116af1569998bafb533c32b20c7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gmd-13-4287-2020-ie00002.svg" width="52pt" height="11pt" src="gmd-13-4287-2020-ie00002.png"/></svg:svg></span></span> in latitude and longitude, respectively; 31 vertical levels) with the reference setup (T42L19). The different model versions are evaluated against airborne in situ measurements performed during the SALTRACE mineral dust campaign (Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment, June–July 2013), i.e. observations of dust transported from the Sahara to the Caribbean. Results show that an increased horizontal and vertical model resolution is able to better represent the spatial distribution of airborne mineral dust, especially in the upper troposphere (above 400&thinsp;<span class="inline-formula">hPa</span>). Additionally, we analyse the effect of varying assumptions for the size distribution of emitted dust but find only a weak sensitivity concerning these changes. The results of this study will help to identify the model setup best suited for future studies and to further improve the representation of mineral dust particles in EMAC-MADE3.</p>https://gmd.copernicus.org/articles/13/4287/2020/gmd-13-4287-2020.pdf