Radial minimizers of a Ginzburg-Landau functional

We consider the functional $$ E_varepsilon(u,G) =frac 1pint_G|abla u|^p +frac{1}{4varepsilon^p}int_G(1-|u|^2)^2 $$ with $p>2$ and $d>0$, on the class of functions $W={u(x)=f(r)e^{idheta} in W^{1,p}(B,C); f(1)=1,f(r)geq 0}$. The location of the zeroes of the minimizer and its convergence as $va...

Full description

Bibliographic Details
Main Authors: Yutian Lei, Zhuoqun Wu, Hongjun Yuan
Format: Article
Language:English
Published: Texas State University 1999-09-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/1999/30/abstr.html