Some New Results Involving the Generalized Bose–Einstein and Fermi–Dirac Functions

In this paper, we obtain a new series representation for the generalized Bose−Einstein and Fermi−Dirac functions by using fractional Weyl transform. To achieve this purpose, we obtain an analytic continuation for these functions by generalizing the domain of Riemann zeta function...

Full description

Bibliographic Details
Main Authors: Rekha Srivastava, Humera Naaz, Sabeena Kazi, Asifa Tassaddiq
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/8/2/63
Description
Summary:In this paper, we obtain a new series representation for the generalized Bose&#8722;Einstein and Fermi&#8722;Dirac functions by using fractional Weyl transform. To achieve this purpose, we obtain an analytic continuation for these functions by generalizing the domain of Riemann zeta functions from <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>&lt;</mo> <mo>&real;</mo> <mrow> <mo>(</mo> <mi mathvariant="normal">s</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>&lt;</mo> <mo>&real;</mo> <mrow> <mo>(</mo> <mi mathvariant="normal">s</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mi mathvariant="sans-serif">&#956;</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> This leads to fresh insights for a new generalization of the Riemann zeta function. The results are validated by obtaining the classical series representation of the polylogarithm and Hurwitz&#8722;Lerch zeta functions as special cases. Fractional derivatives and the relationship of the generalized Bose&#8722;Einstein and Fermi&#8722;Dirac functions with Apostol&#8722;Euler&#8722;N&#246;rlund polynomials are established to prove new identities.
ISSN:2075-1680