Inkjet printed drug-releasing polyelectrolyte multilayers for wound dressings

Inkjet printing was used as a novel processing method for the preparation of polyelectrolyte multilayers. Conformal, consistent coatings were formed on a cotton substrate. As a demonstration of a potential application of this processing method, polyelectrolyte multilayers were assembled on cotton fo...

Full description

Bibliographic Details
Main Authors: Huilin Yang, Amy M. Peterson
Format: Article
Language:English
Published: AIMS Press 2017-03-01
Series:AIMS Materials Science
Subjects:
Online Access:http://www.aimspress.com/Materials/article/1312/fulltext.html
Description
Summary:Inkjet printing was used as a novel processing method for the preparation of polyelectrolyte multilayers. Conformal, consistent coatings were formed on a cotton substrate. As a demonstration of a potential application of this processing method, polyelectrolyte multilayers were assembled on cotton for wound dressing. When loaded with gentamicin, these coatings demonstrated burst release of 50% of the loaded gentamicin over the first five hours, followed by consistent release of 0.15 µg/(cm<sup>2</sup>-h) for at least four days. Significant antimicrobial activity of the gentamicin-releasing polyelectrolyte multilayer-coated cotton was observed, with a zone of inhibition of 1.575 ± 0.03 cm. This result is comparable to the zone of inhibition for cotton soaked in gentamicin (1.75 ± 0.04 cm), indicating that the inkjet printing processing method does not degrade gentamicin. Inkjet printing shows promise as a low cost, versatile option for polyelectrolyte multilayer fabrication. Additionally, as a scalable process, inkjet printed samples exhibited consistent antibacterial function for over three months after preparation.
ISSN:2372-0484