Damage localization of closing cracks using a signal decomposition technique

Fatigue cracks are a common occurrence in engineering structures subjected to dynamic loading and need to identify at its earliest stage before it leads to catastrophic failure. The presence of fatigue-breathing crack or closing cracks is usually characterised by the presence of sub, super-harmonic...

Full description

Bibliographic Details
Main Authors: J. Prawin, Rama Mohan Rao A
Format: Article
Language:English
Published: Gruppo Italiano Frattura 2019-03-01
Series:Frattura ed Integrità Strutturale
Subjects:
Online Access:https://www.fracturae.com/index.php/fis/article/view/2258
Description
Summary:Fatigue cracks are a common occurrence in engineering structures subjected to dynamic loading and need to identify at its earliest stage before it leads to catastrophic failure. The presence of fatigue-breathing crack or closing cracks is usually characterised by the presence of sub, super-harmonics, and inter-modulation in the response of the structure subjected to harmonic excitation. It should be mentioned here that the amplitude of nonlinear harmonics are of very less order in magnitude when compared to linear or excitation component. Further, these nonlinear components often get buried in noise as both are having matched (low) energy levels. The present work attempts to decompose the acceleration time history response using singular spectrum analysis and propose a strategy to extract the nonlinear components from the residual noisy time history component. A new damage index based on these extracted nonlinear features is also proposed for closing crack localization. The effectiveness of the proposed closing crack localization approach is illustrated using detailed numerical studies and validated with lab level experimentation on the simple beam-like structure. It can be concluded from the investigations that the proposed signal decomposition based damage localization technique can detect and locate more than one crack present in the structure.
ISSN:1971-8993