Delay-induced Hopf bifurcation in a diffusive Holling–Tanner predator–prey model with ratio-dependent response and Smith growth

Abstract In this paper, we study a diffusion Holling–Tanner predator–prey model with ratio-dependent functional response and Simth growth subject to a homogeneous Neumann boundary condition. Firstly, we use iteration technique and eigenvalue analysis to get the local stability and a Hopf bifurcation...

Full description

Bibliographic Details
Main Authors: Huiping Fang, Ling Hu, Yongfeng Wu
Format: Article
Language:English
Published: SpringerOpen 2018-08-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-018-1726-4
Description
Summary:Abstract In this paper, we study a diffusion Holling–Tanner predator–prey model with ratio-dependent functional response and Simth growth subject to a homogeneous Neumann boundary condition. Firstly, we use iteration technique and eigenvalue analysis to get the local stability and a Hopf bifurcation at the positive equilibrium. Secondly, by choosing the constant related to delay as bifurcation parameter we obtain periodic solutions near the positive equilibrium. Besides, by using center manifold theory and normal form theory we reflect the stability with Hopf bifurcating periodic solution and bifurcating direction.
ISSN:1687-1847