Monitoring the ecological environment of open-pit coalfields in cold zone of Northeast China using Landsat time series images of 2000-2015

Evaluating the deterioration of ecological environment and vegetation of coalfields caused by China’s large-scale coal mining activities is important because of the fragile ecological environment and low temperature in cold and arid areas. This study takes the open coal pits of Haizhou, Gulianhe, an...

Full description

Bibliographic Details
Main Authors: Hongdan Zhang, Yungang Cao, Xiaolei Zhang, Xuefeng Ji, Fashuai Li, Wenbin Sun
Format: Article
Language:English
Published: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek 2017-01-01
Series:Tehnički Vjesnik
Subjects:
Online Access:https://hrcak.srce.hr/file/257846
id doaj-afd36906382a462095a061ab0e5e50cd
record_format Article
spelling doaj-afd36906382a462095a061ab0e5e50cd2020-11-24T20:58:22ZengFaculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek Tehnički Vjesnik1330-36511848-63392017-01-01241129139Monitoring the ecological environment of open-pit coalfields in cold zone of Northeast China using Landsat time series images of 2000-2015Hongdan Zhang0Yungang Cao1Xiaolei Zhang2Xuefeng Ji3Fashuai Li4Wenbin Sun5College of Geo-science and Surveying Engineering, University of Mining & Technology (Beijing), D11, Xueyuan Road, Haidian District, Beijing, 100083 P. R. ChinaFaculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, The Western Park of the Hi-Tech Industrial Development Zone, Chengdu, Sichuan Province, 611756, P. R. ChinaCollege of Geo-science and Surveying Engineering, University of Mining & Technology (Beijing), D11, Xueyuan Road, Haidian District, Beijing, 100083 P. R. ChinaCollege of Geo-science and Surveying Engineering, University of Mining & Technology (Beijing), D11, Xueyuan Road, Haidian District, Beijing, 100083 P. R. ChinaFaculty of Geo-Information Science and Earth Observation, University of Twente, Hengelosestraat 99, 7514 AE, Enschede, The NetherlandsCollege of Geo-science and Surveying Engineering, University of Mining & Technology (Beijing), D11, Xueyuan Road, Haidian District, Beijing, 100083 P. R. ChinaEvaluating the deterioration of ecological environment and vegetation of coalfields caused by China’s large-scale coal mining activities is important because of the fragile ecological environment and low temperature in cold and arid areas. This study takes the open coal pits of Haizhou, Gulianhe, and Huolinhe as examples and proposes a method for evaluating their ecological environment using Landsat time series images based on the Normalized Difference Vegetation Index (NDVI) variations of open-pit coalfields in cold and arid zones. The average NDVI value of the mining area each month was calculated using Landsat image data from 2000 to 2015. The vegetation cover area in the coalfields was extracted according to the NDVI threshold, and the scatter plots of the annual maximum NDVI and vegetation cover area were drawn. We fitted the variation trend line of maximum NDVI value and vegetation cover area to reduce the effect of meteorological factors on NDVI values. Results show that after the closure of open pit and reclamation of dump area, the NDVI of open-pit coalfields and vegetation cover area have been increasing rapidly over the last decade, and the ecological environment of these coalfields has obviously improved. The coal mining activities have led to the rapid decline of annual maximum NDVI and vegetation cover area of the coalfields in permafrost zones, and the ecological environment of coalfields continues to deteriorate. Although the quarterly average NDVI remains unchanged in non-permafrost mining coalfields under coal exploitation, the vegetation cover area in the coalfields decreases linearly, indicating that the ecological environment of the coalfields tends to deteriorate. From an ecological environment protection perspective, the results of this study provide a basis for decision making in constructing large-scale open pits in cold and arid zones.https://hrcak.srce.hr/file/257846coalfieldecological environmentLandsat data setNormalized Difference Vegetation Index (NDVI)time series
collection DOAJ
language English
format Article
sources DOAJ
author Hongdan Zhang
Yungang Cao
Xiaolei Zhang
Xuefeng Ji
Fashuai Li
Wenbin Sun
spellingShingle Hongdan Zhang
Yungang Cao
Xiaolei Zhang
Xuefeng Ji
Fashuai Li
Wenbin Sun
Monitoring the ecological environment of open-pit coalfields in cold zone of Northeast China using Landsat time series images of 2000-2015
Tehnički Vjesnik
coalfield
ecological environment
Landsat data set
Normalized Difference Vegetation Index (NDVI)
time series
author_facet Hongdan Zhang
Yungang Cao
Xiaolei Zhang
Xuefeng Ji
Fashuai Li
Wenbin Sun
author_sort Hongdan Zhang
title Monitoring the ecological environment of open-pit coalfields in cold zone of Northeast China using Landsat time series images of 2000-2015
title_short Monitoring the ecological environment of open-pit coalfields in cold zone of Northeast China using Landsat time series images of 2000-2015
title_full Monitoring the ecological environment of open-pit coalfields in cold zone of Northeast China using Landsat time series images of 2000-2015
title_fullStr Monitoring the ecological environment of open-pit coalfields in cold zone of Northeast China using Landsat time series images of 2000-2015
title_full_unstemmed Monitoring the ecological environment of open-pit coalfields in cold zone of Northeast China using Landsat time series images of 2000-2015
title_sort monitoring the ecological environment of open-pit coalfields in cold zone of northeast china using landsat time series images of 2000-2015
publisher Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek
series Tehnički Vjesnik
issn 1330-3651
1848-6339
publishDate 2017-01-01
description Evaluating the deterioration of ecological environment and vegetation of coalfields caused by China’s large-scale coal mining activities is important because of the fragile ecological environment and low temperature in cold and arid areas. This study takes the open coal pits of Haizhou, Gulianhe, and Huolinhe as examples and proposes a method for evaluating their ecological environment using Landsat time series images based on the Normalized Difference Vegetation Index (NDVI) variations of open-pit coalfields in cold and arid zones. The average NDVI value of the mining area each month was calculated using Landsat image data from 2000 to 2015. The vegetation cover area in the coalfields was extracted according to the NDVI threshold, and the scatter plots of the annual maximum NDVI and vegetation cover area were drawn. We fitted the variation trend line of maximum NDVI value and vegetation cover area to reduce the effect of meteorological factors on NDVI values. Results show that after the closure of open pit and reclamation of dump area, the NDVI of open-pit coalfields and vegetation cover area have been increasing rapidly over the last decade, and the ecological environment of these coalfields has obviously improved. The coal mining activities have led to the rapid decline of annual maximum NDVI and vegetation cover area of the coalfields in permafrost zones, and the ecological environment of coalfields continues to deteriorate. Although the quarterly average NDVI remains unchanged in non-permafrost mining coalfields under coal exploitation, the vegetation cover area in the coalfields decreases linearly, indicating that the ecological environment of the coalfields tends to deteriorate. From an ecological environment protection perspective, the results of this study provide a basis for decision making in constructing large-scale open pits in cold and arid zones.
topic coalfield
ecological environment
Landsat data set
Normalized Difference Vegetation Index (NDVI)
time series
url https://hrcak.srce.hr/file/257846
work_keys_str_mv AT hongdanzhang monitoringtheecologicalenvironmentofopenpitcoalfieldsincoldzoneofnortheastchinausinglandsattimeseriesimagesof20002015
AT yungangcao monitoringtheecologicalenvironmentofopenpitcoalfieldsincoldzoneofnortheastchinausinglandsattimeseriesimagesof20002015
AT xiaoleizhang monitoringtheecologicalenvironmentofopenpitcoalfieldsincoldzoneofnortheastchinausinglandsattimeseriesimagesof20002015
AT xuefengji monitoringtheecologicalenvironmentofopenpitcoalfieldsincoldzoneofnortheastchinausinglandsattimeseriesimagesof20002015
AT fashuaili monitoringtheecologicalenvironmentofopenpitcoalfieldsincoldzoneofnortheastchinausinglandsattimeseriesimagesof20002015
AT wenbinsun monitoringtheecologicalenvironmentofopenpitcoalfieldsincoldzoneofnortheastchinausinglandsattimeseriesimagesof20002015
_version_ 1716785976766889984