Bioactive Lipids of Marine Microalga <i>Chlorococcum</i> sp. SABC 012504 with Anti-Inflammatory and Anti-thrombotic Activities

Microalgae are at the start of the food chain, and many are known producers of a significant amount of lipids with essential fatty acids. However, the bioactivity of microalgal lipids for anti-inflammatory and antithrombotic activities have rarely been investigated. Therefore, for a sustainable sour...

Full description

Bibliographic Details
Main Authors: Katie Shiels, Alexandros Tsoupras, Ronan Lordan, Constantina Nasopoulou, Ioannis Zabetakis, Patrick Murray, Sushanta Kumar Saha
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Marine Drugs
Subjects:
Online Access:https://www.mdpi.com/1660-3397/19/1/28
Description
Summary:Microalgae are at the start of the food chain, and many are known producers of a significant amount of lipids with essential fatty acids. However, the bioactivity of microalgal lipids for anti-inflammatory and antithrombotic activities have rarely been investigated. Therefore, for a sustainable source of the above bioactive lipids, the present study was undertaken. The total lipids of microalga <i>Chlorococcum</i> sp., isolated from the Irish coast, were fractionated into neutral-, glyco-, and phospho-lipids, and were tested in vitro for their anti-inflammatory and antithrombotic activities. All tested lipid fractions showed strong anti-platelet-activating factor (PAF) and antithrombin activities in human platelets (half maximal inhibitory concentration (IC<sub>50</sub>) values ranging ~25–200 μg of lipid) with the highest activities in glyco- and phospho-lipid fractions. The structural analysis of the bioactive lipid fraction-2 revealed the presence of specific sulfoquinovosyl diacylglycerols (SQDG) bioactive molecules and the HexCer-t36:2 (t18:1/18:1 and 18:2/18:0) cerebrosides with a phytosphingosine (4-hydrosphinganine) base, while fraction-3 contained bioactive phosphatidylcholine (PC) and phosphatidylethanolamine (PE) molecules. These novel bioactive lipids of <i>Chlorococcum</i> sp. with putative health benefits may indicate that marine microalgae can be a sustainable alternative source for bioactive lipids production for food supplements and nutraceutical applications. However, further studies are required towards the commercial technology pathways development and biosafety analysis for the use of the microalga.
ISSN:1660-3397