Rapid Algorithm for Generating Entry Landing Footprints Satisfying the No-Fly Zone Constraint

An online estimation algorithm of landing footprints based on the drag acceleration-energy profile is proposed for an entry hypersonic vehicle. Firstly, based on the Evolved Acceleration Guidance Logic for Entry (EAGLE), drag acceleration-energy profiles are designed. To track the drag acceleration-...

Full description

Bibliographic Details
Main Authors: Shengnan Fu, Tianyu Lu, Jian Yin, Qunli Xia
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2021/8827377
Description
Summary:An online estimation algorithm of landing footprints based on the drag acceleration-energy profile is proposed for an entry hypersonic vehicle. Firstly, based on the Evolved Acceleration Guidance Logic for Entry (EAGLE), drag acceleration-energy profiles are designed. To track the drag acceleration-energy profile obtained by the interpolation, a drag acceleration tracking law is designed. Secondly, based on the constraint model of the no-fly zone, flying around strategies are proposed for different conditions, and a reachable area algorithm is designed for no-fly zones. Additionally, by interpolating the minimum and maximum drag acceleration profiles, the terminal heading angle constraint is designed to realize the accurate calculation of the minimum and maximum downrange ranges by adjusting the sign of the bank angle. In this way, the distribution of landing footprints is more reasonable, and the boundary of a reachable area is more accurate. The simulation results under typical conditions indicate that the proposed method can calculate landing footprints for different situations rapidly and with the good adaptability.
ISSN:1687-5966
1687-5974