Improved Soil Moisture and Electrical Conductivity Prediction of Citrus Orchards Based on IoT Using Deep Bidirectional LSTM

In order to create an irrigation scheduling plan for use in large-area citrus orchards, an environmental information collection system of citrus orchards was established based on the Internet of Things (IoT). With the environmental information data, deep bidirectional long short-term memory (Bid-LST...

Full description

Bibliographic Details
Main Authors: Peng Gao, Jiaxing Xie, Mingxin Yang, Ping Zhou, Wenbin Chen, Gaotian Liang, Yufeng Chen, Xiongzhe Han, Weixing Wang
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/11/7/635
Description
Summary:In order to create an irrigation scheduling plan for use in large-area citrus orchards, an environmental information collection system of citrus orchards was established based on the Internet of Things (IoT). With the environmental information data, deep bidirectional long short-term memory (Bid-LSTM) networks are proposed to improve soil moisture (SM) and soil electrical conductivity (SEC) predictions, providing a meaningful reference for the irrigation and fertilization of citrus orchards. The IoT system contains SM, SEC, air temperature and humidity, wind speed, and precipitation sensors, while the mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (<i>R</i><sup>2</sup>) were calculated to evaluate the performance of the models. The performance of the deep Bid-LSTM model was compared with a multi-layer neural network (MLNN). The results for the performance criteria reveal that the proposed deep Bid-LSTM networks perform better than the MLNN model, according to many of the evaluation indicators of this study.
ISSN:2077-0472