Effect of load level of corner columns on punching shear resistance of flat slabs

The problem related to the effect of the corner column load on the punching shear resistance of the slab was presented. Existing experimental studies on internal columns demonstrated that the column pressure could lead to an increase in the punching shear resistance. Because of different confinemen...

Full description

Bibliographic Details
Main Authors: Michał Gołdyn, Tadeusz Urban
Format: Article
Language:English
Published: Lublin University of Technology 2020-09-01
Series:Budownictwo i Architektura
Subjects:
Online Access:https://ph.pollub.pl/index.php/bia/article/view/2123
Description
Summary:The problem related to the effect of the corner column load on the punching shear resistance of the slab was presented. Existing experimental studies on internal columns demonstrated that the column pressure could lead to an increase in the punching shear resistance. Because of different confinement conditions of corner column-slab connection joints, it is unclear if such an effect exists for corner columns. New experimental investigations were initiated to clarify this issue. They covered a total of three corner column-slab connection specimens – slabs with a thickness of 140 mm and a longitudinal reinforcement ratio ρl = 1.09% connected with columns of a cross-section of 200×200 mm. The only variable parameter was the column load equal to 500, 1000 and 1500 kN. A reduction of the slab load-carrying capacity of about 9% due to a three-fold increase in the column load was noted. Therefore, the effect of the column load turned out to be opposite to that observed for most previous tests on internal column-slab connections, which could have a result of a limited capacity of the slab reinforcement due to additional tensile forces from the lateral expansion of joint concrete. Comparison in the light of test results demonstrated, that EN 1992-1-1 procedure allowed for safe, yet conservative estimation of the punching shear resistance. An average ratio of experimental to theoretical load of 1.82 was obtained.
ISSN:1899-0665
2544-3275