Finite Element Simulation of Ionic Electrodiffusion in Cellular Geometries

Mathematical models for excitable cells are commonly based on cable theory, which considers a homogenized domain and spatially constant ionic concentrations. Although such models provide valuable insight, the effect of altered ion concentrations or detailed cell morphology on the electrical potentia...

Full description

Bibliographic Details
Main Authors: Ada J. Ellingsrud, Andreas Solbrå, Gaute T. Einevoll, Geir Halnes, Marie E. Rognes
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-03-01
Series:Frontiers in Neuroinformatics
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fninf.2020.00011/full
id doaj-b1ab3ae3967d4a98953241b62fca3d92
record_format Article
spelling doaj-b1ab3ae3967d4a98953241b62fca3d922020-11-25T02:38:28ZengFrontiers Media S.A.Frontiers in Neuroinformatics1662-51962020-03-011410.3389/fninf.2020.00011506706Finite Element Simulation of Ionic Electrodiffusion in Cellular GeometriesAda J. Ellingsrud0Andreas Solbrå1Andreas Solbrå2Gaute T. Einevoll3Gaute T. Einevoll4Gaute T. Einevoll5Geir Halnes6Geir Halnes7Marie E. Rognes8Department for Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, NorwayCentre for Integrative Neuroplasticity, University of Oslo, Oslo, NorwayDepartment of Physics, University of Oslo, Oslo, NorwayCentre for Integrative Neuroplasticity, University of Oslo, Oslo, NorwayDepartment of Physics, University of Oslo, Oslo, NorwayFaculty of Science and Technology, Norwegian University of Life Sciences, Ås, NorwayCentre for Integrative Neuroplasticity, University of Oslo, Oslo, NorwayFaculty of Science and Technology, Norwegian University of Life Sciences, Ås, NorwayDepartment for Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, NorwayMathematical models for excitable cells are commonly based on cable theory, which considers a homogenized domain and spatially constant ionic concentrations. Although such models provide valuable insight, the effect of altered ion concentrations or detailed cell morphology on the electrical potentials cannot be captured. In this paper, we discuss an alternative approach to detailed modeling of electrodiffusion in neural tissue. The mathematical model describes the distribution and evolution of ion concentrations in a geometrically-explicit representation of the intra- and extracellular domains. As a combination of the electroneutral Kirchhoff-Nernst-Planck (KNP) model and the Extracellular-Membrane-Intracellular (EMI) framework, we refer to this model as the KNP-EMI model. Here, we introduce and numerically evaluate a new, finite element-based numerical scheme for the KNP-EMI model, capable of efficiently and flexibly handling geometries of arbitrary dimension and arbitrary polynomial degree. Moreover, we compare the electrical potentials predicted by the KNP-EMI and EMI models. Finally, we study ephaptic coupling induced in an unmyelinated axon bundle and demonstrate how the KNP-EMI framework can give new insights in this setting.https://www.frontiersin.org/article/10.3389/fninf.2020.00011/fullfinite elementelectrodiffusionion concentrationscell membraneephaptic couplingKNP-EMI
collection DOAJ
language English
format Article
sources DOAJ
author Ada J. Ellingsrud
Andreas Solbrå
Andreas Solbrå
Gaute T. Einevoll
Gaute T. Einevoll
Gaute T. Einevoll
Geir Halnes
Geir Halnes
Marie E. Rognes
spellingShingle Ada J. Ellingsrud
Andreas Solbrå
Andreas Solbrå
Gaute T. Einevoll
Gaute T. Einevoll
Gaute T. Einevoll
Geir Halnes
Geir Halnes
Marie E. Rognes
Finite Element Simulation of Ionic Electrodiffusion in Cellular Geometries
Frontiers in Neuroinformatics
finite element
electrodiffusion
ion concentrations
cell membrane
ephaptic coupling
KNP-EMI
author_facet Ada J. Ellingsrud
Andreas Solbrå
Andreas Solbrå
Gaute T. Einevoll
Gaute T. Einevoll
Gaute T. Einevoll
Geir Halnes
Geir Halnes
Marie E. Rognes
author_sort Ada J. Ellingsrud
title Finite Element Simulation of Ionic Electrodiffusion in Cellular Geometries
title_short Finite Element Simulation of Ionic Electrodiffusion in Cellular Geometries
title_full Finite Element Simulation of Ionic Electrodiffusion in Cellular Geometries
title_fullStr Finite Element Simulation of Ionic Electrodiffusion in Cellular Geometries
title_full_unstemmed Finite Element Simulation of Ionic Electrodiffusion in Cellular Geometries
title_sort finite element simulation of ionic electrodiffusion in cellular geometries
publisher Frontiers Media S.A.
series Frontiers in Neuroinformatics
issn 1662-5196
publishDate 2020-03-01
description Mathematical models for excitable cells are commonly based on cable theory, which considers a homogenized domain and spatially constant ionic concentrations. Although such models provide valuable insight, the effect of altered ion concentrations or detailed cell morphology on the electrical potentials cannot be captured. In this paper, we discuss an alternative approach to detailed modeling of electrodiffusion in neural tissue. The mathematical model describes the distribution and evolution of ion concentrations in a geometrically-explicit representation of the intra- and extracellular domains. As a combination of the electroneutral Kirchhoff-Nernst-Planck (KNP) model and the Extracellular-Membrane-Intracellular (EMI) framework, we refer to this model as the KNP-EMI model. Here, we introduce and numerically evaluate a new, finite element-based numerical scheme for the KNP-EMI model, capable of efficiently and flexibly handling geometries of arbitrary dimension and arbitrary polynomial degree. Moreover, we compare the electrical potentials predicted by the KNP-EMI and EMI models. Finally, we study ephaptic coupling induced in an unmyelinated axon bundle and demonstrate how the KNP-EMI framework can give new insights in this setting.
topic finite element
electrodiffusion
ion concentrations
cell membrane
ephaptic coupling
KNP-EMI
url https://www.frontiersin.org/article/10.3389/fninf.2020.00011/full
work_keys_str_mv AT adajellingsrud finiteelementsimulationofionicelectrodiffusionincellulargeometries
AT andreassolbra finiteelementsimulationofionicelectrodiffusionincellulargeometries
AT andreassolbra finiteelementsimulationofionicelectrodiffusionincellulargeometries
AT gauteteinevoll finiteelementsimulationofionicelectrodiffusionincellulargeometries
AT gauteteinevoll finiteelementsimulationofionicelectrodiffusionincellulargeometries
AT gauteteinevoll finiteelementsimulationofionicelectrodiffusionincellulargeometries
AT geirhalnes finiteelementsimulationofionicelectrodiffusionincellulargeometries
AT geirhalnes finiteelementsimulationofionicelectrodiffusionincellulargeometries
AT marieerognes finiteelementsimulationofionicelectrodiffusionincellulargeometries
_version_ 1724790764657967104