Implications for chloro- and pheopigment synthesis and preservation from combined compound-specific &delta;<sup>13</sup>C, &delta;<sup>15</sup>N, and &Delta;<sup>14</sup>C analysis

Chloropigments and their derivative pheopigments preserved in sediments can directly be linked to photosynthesis. Their carbon and nitrogen stable isotopic compositions have been shown to be a good recorder of recent and past surface ocean environmental conditions tracing the carbon and nitrogen sou...

Full description

Bibliographic Details
Main Authors: G. Mollenhauer, J. Friedrich, N. Ohkouchi, M. Butzin, N. O. Ogawa, M. Altabet, Y. Kashiyama, S. Kusch
Format: Article
Language:English
Published: Copernicus Publications 2010-12-01
Series:Biogeosciences
Online Access:http://www.biogeosciences.net/7/4105/2010/bg-7-4105-2010.pdf
Description
Summary:Chloropigments and their derivative pheopigments preserved in sediments can directly be linked to photosynthesis. Their carbon and nitrogen stable isotopic compositions have been shown to be a good recorder of recent and past surface ocean environmental conditions tracing the carbon and nitrogen sources and dominant assimilation processes of the phytoplanktonic community. In this study we report results from combined compound-specific radiocarbon and stable carbon and nitrogen isotope analysis to examine the time-scales of synthesis and fate of chlorophyll-<i>a</i> and its degradation products pheophytin-<i>a</i>, pyropheophytin-<i>a</i>, and 13<sup>2</sup>,17<sup>3</sup>-cyclopheophorbide-<i>a</i>-enol until burial in Black Sea core-top sediments. The pigments are mainly of marine phytoplanktonic origin as implied by their stable isotopic compositions. Pigment &delta;<sup>15</sup>N values indicate nitrate as the major uptake substrate but <sup>15</sup>N-depletion towards the open marine setting indicates either contribution from N<sub>2</sub>-fixation or direct uptake of ammonium from deeper waters. Radiocarbon concentrations translate into minimum and maximum pigment ages of approximately 40 to 1200 years. This implies that protective mechanisms against decomposition such as association with minerals, storage in deltaic anoxic environments, or eutrophication-induced hypoxia and light limitation are much more efficient than previously thought. Moreover, seasonal variations of nutrient source, growth period, and habitat and their associated isotopic variability are likely at least as strong as long-term trends. Combined triple isotope analysis of sedimentary chlorophyll and its primary derivatives is a powerful tool to delineate biogeochemical and diagenetic processes in the surface water and sediments, and to assess their precise time-scales.
ISSN:1726-4170
1726-4189