Critical signaling pathways during Wallerian degeneration of peripheral nerve
Wallerian degeneration is a critical biological process that occurs in distal nerve stumps after nerve injury. To systematically investigate molecular changes underlying Wallerian degeneration, we used a rat sciatic nerve transection model to examine microarray analysis outcomes and investigate sign...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer Medknow Publications
2017-01-01
|
Series: | Neural Regeneration Research |
Subjects: | |
Online Access: | http://www.nrronline.org/article.asp?issn=1673-5374;year=2017;volume=12;issue=6;spage=995;epage=1002;aulast=Cheng |
id |
doaj-b21c8b7690e04349b724e29f8f5e4a34 |
---|---|
record_format |
Article |
spelling |
doaj-b21c8b7690e04349b724e29f8f5e4a342020-11-25T03:19:05ZengWolters Kluwer Medknow PublicationsNeural Regeneration Research1673-53742017-01-01126995100210.4103/1673-5374.208596Critical signaling pathways during Wallerian degeneration of peripheral nerveQiong ChengYa-xian WangJun YuSheng YiWallerian degeneration is a critical biological process that occurs in distal nerve stumps after nerve injury. To systematically investigate molecular changes underlying Wallerian degeneration, we used a rat sciatic nerve transection model to examine microarray analysis outcomes and investigate significantly involved Kyoto Enrichment of Genes and Genomes (KEGG) pathways in injured distal nerve stumps at 0, 0.5, 1, 6, 12, and 24 hours, 4 days, 1, 2, 3, and 4 weeks after peripheral nerve injury. Bioinformatic analysis showed that only one KEGG pathway (cytokine-cytokine receptor interaction) was significantly enriched at an early time point (1 hour post-sciatic nerve transection). At later time points, the number of enriched KEGG pathways initially increased and then decreased. Three KEGG pathways were studied in further detail: cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and axon guidance. Moreover, temporal expression patterns of representative differentially expressed genes in these KEGG pathways were validated by real time-polymerase chain reaction. Taken together, the above three signaling pathways are important after sciatic nerve injury, and may increase our understanding of the molecular mechanisms underlying Wallerian degenerationhttp://www.nrronline.org/article.asp?issn=1673-5374;year=2017;volume=12;issue=6;spage=995;epage=1002;aulast=Chengnerve regeneration; Wallerian degeneration; sciatic nerve transection; peripheral nerve regeneration; microarray; bioinformatic analysis; Kyoto Enrichment of Genes and Genomes; signaling pathway; cytokine-cytokine receptor interaction; neuroactive ligand-receptor interaction; axon guidance; neural regeneration |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Qiong Cheng Ya-xian Wang Jun Yu Sheng Yi |
spellingShingle |
Qiong Cheng Ya-xian Wang Jun Yu Sheng Yi Critical signaling pathways during Wallerian degeneration of peripheral nerve Neural Regeneration Research nerve regeneration; Wallerian degeneration; sciatic nerve transection; peripheral nerve regeneration; microarray; bioinformatic analysis; Kyoto Enrichment of Genes and Genomes; signaling pathway; cytokine-cytokine receptor interaction; neuroactive ligand-receptor interaction; axon guidance; neural regeneration |
author_facet |
Qiong Cheng Ya-xian Wang Jun Yu Sheng Yi |
author_sort |
Qiong Cheng |
title |
Critical signaling pathways during Wallerian degeneration of peripheral nerve |
title_short |
Critical signaling pathways during Wallerian degeneration of peripheral nerve |
title_full |
Critical signaling pathways during Wallerian degeneration of peripheral nerve |
title_fullStr |
Critical signaling pathways during Wallerian degeneration of peripheral nerve |
title_full_unstemmed |
Critical signaling pathways during Wallerian degeneration of peripheral nerve |
title_sort |
critical signaling pathways during wallerian degeneration of peripheral nerve |
publisher |
Wolters Kluwer Medknow Publications |
series |
Neural Regeneration Research |
issn |
1673-5374 |
publishDate |
2017-01-01 |
description |
Wallerian degeneration is a critical biological process that occurs in distal nerve stumps after nerve injury. To systematically investigate molecular changes underlying Wallerian degeneration, we used a rat sciatic nerve transection model to examine microarray analysis outcomes and investigate significantly involved Kyoto Enrichment of Genes and Genomes (KEGG) pathways in injured distal nerve stumps at 0, 0.5, 1, 6, 12, and 24 hours, 4 days, 1, 2, 3, and 4 weeks after peripheral nerve injury. Bioinformatic analysis showed that only one KEGG pathway (cytokine-cytokine receptor interaction) was significantly enriched at an early time point (1 hour post-sciatic nerve transection). At later time points, the number of enriched KEGG pathways initially increased and then decreased. Three KEGG pathways were studied in further detail: cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and axon guidance. Moreover, temporal expression patterns of representative differentially expressed genes in these KEGG pathways were validated by real time-polymerase chain reaction. Taken together, the above three signaling pathways are important after sciatic nerve injury, and may increase our understanding of the molecular mechanisms underlying Wallerian degeneration |
topic |
nerve regeneration; Wallerian degeneration; sciatic nerve transection; peripheral nerve regeneration; microarray; bioinformatic analysis; Kyoto Enrichment of Genes and Genomes; signaling pathway; cytokine-cytokine receptor interaction; neuroactive ligand-receptor interaction; axon guidance; neural regeneration |
url |
http://www.nrronline.org/article.asp?issn=1673-5374;year=2017;volume=12;issue=6;spage=995;epage=1002;aulast=Cheng |
work_keys_str_mv |
AT qiongcheng criticalsignalingpathwaysduringwalleriandegenerationofperipheralnerve AT yaxianwang criticalsignalingpathwaysduringwalleriandegenerationofperipheralnerve AT junyu criticalsignalingpathwaysduringwalleriandegenerationofperipheralnerve AT shengyi criticalsignalingpathwaysduringwalleriandegenerationofperipheralnerve |
_version_ |
1724623821100548096 |