A multi-domain decomposition strategy for the lattice Boltzmann method for steady-state flows
The lattice Boltzmann method (LBM) is a potent numerical technique based on kinetic theory. It can effectively simulate the steady-state and unsteady-state flow problems. A multi-domain decomposition strategy is developed for the LBM in order to accelerate the rate of convergence in different domain...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2016-01-01
|
Series: | Engineering Applications of Computational Fluid Mechanics |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/19942060.2015.1092743 |
Summary: | The lattice Boltzmann method (LBM) is a potent numerical technique based on kinetic theory. It can effectively simulate the steady-state and unsteady-state flow problems. A multi-domain decomposition strategy is developed for the LBM in order to accelerate the rate of convergence in different domains by the relative error in the different regions of the steady-state flow. In addition, the proposed method can effectively reduce the amount of calculations required and improve numerical stability. Numerical experiments involving both two- and three-dimensional steady-state flows demonstrate drastically improved computational efficiency and superior numerical stability over the popular lattice Bathnagar-Gross-Krook (BGK) model. Moreover, for unsteady-state flow problems, the presented method can also be used to obtain the flow phenomenon of some unsteady-state flows by choosing the suitable parameter. |
---|---|
ISSN: | 1994-2060 1997-003X |