Fault Diagnosis of Nonlinear Analog Circuit Based on Generalized Frequency Response Function and LSSVM Classifier Fusion
For fault diagnosis of nonlinear analog circuit, a novel method based on generalized frequency response function (GFRF) and least square support vector machine (LSSVM) classifier fusion is presented. The sinusoidal signal is used as the input of analog circuit, and then, the generalized frequency re...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/8274570 |
Summary: | For fault diagnosis of nonlinear analog circuit, a novel method based on generalized frequency response function (GFRF) and least square support vector machine (LSSVM) classifier fusion is presented. The sinusoidal signal is used as the input of analog circuit, and then, the generalized frequency response functions are estimated directly by the time-domain formulations. The discrete Fourier transform of measurement data is avoided. After obtaining the generalized frequency response functions, the amplitudes of the GFRFs are chosen as the fault feature parameters. A classifier fusion algorithm based on least square support vector machine (LSSVM) is used for fault identification. Two LSSVM multifault classifiers with different kernel functions are constructed as subclassifiers. Fault diagnosis experiments of resistor-capacitance (RC) circuit and Sallen Key filter are carried out, respectively. The results show that the estimated GFRFs of the circuit are accurate, and the fault diagnosis method can get high recognition rate. |
---|---|
ISSN: | 1024-123X 1563-5147 |