Fault Diagnosis of Nonlinear Analog Circuit Based on Generalized Frequency Response Function and LSSVM Classifier Fusion

For fault diagnosis of nonlinear analog circuit, a novel method based on generalized frequency response function (GFRF) and least square support vector machine (LSSVM) classifier fusion is presented. The sinusoidal signal is used as the input of analog circuit, and then, the generalized frequency re...

Full description

Bibliographic Details
Main Author: Jialiang Zhang
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2020/8274570
Description
Summary:For fault diagnosis of nonlinear analog circuit, a novel method based on generalized frequency response function (GFRF) and least square support vector machine (LSSVM) classifier fusion is presented. The sinusoidal signal is used as the input of analog circuit, and then, the generalized frequency response functions are estimated directly by the time-domain formulations. The discrete Fourier transform of measurement data is avoided. After obtaining the generalized frequency response functions, the amplitudes of the GFRFs are chosen as the fault feature parameters. A classifier fusion algorithm based on least square support vector machine (LSSVM) is used for fault identification. Two LSSVM multifault classifiers with different kernel functions are constructed as subclassifiers. Fault diagnosis experiments of resistor-capacitance (RC) circuit and Sallen Key filter are carried out, respectively. The results show that the estimated GFRFs of the circuit are accurate, and the fault diagnosis method can get high recognition rate.
ISSN:1024-123X
1563-5147