Detection and Prediction of Peripheral Arterial Plaque Using Vessel Wall MR in Patients with Diabetes

Objectives. To evaluate the predictive performance of a newly developed delay alternating with nutation for tailored excitation (DANTE) pulse sequence for detecting lower extremity artery wall morphology and distribution in patients with peripheral artery disease (PAD) with diabetes. Methods. Sevent...

Full description

Bibliographic Details
Main Authors: Li Wang, Wei Deng, Jianke Liang, Weizhao Zhuang, Huigang Feng, Gaoming Zhuang, Dexiang Liu, Hanwei Chen
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2021/5585846
Description
Summary:Objectives. To evaluate the predictive performance of a newly developed delay alternating with nutation for tailored excitation (DANTE) pulse sequence for detecting lower extremity artery wall morphology and distribution in patients with peripheral artery disease (PAD) with diabetes. Methods. Seventy-four PAD patients diagnosed according to 2011 WHO criteria were enrolled, who has diabetic diagnosis by 1999 WHO diabetes criteria. All patients received sequential DANTE, T2WI, DANTE-enhance, and CE-MRA scans. The images consisted of three parts: the iliac artery (segment 1), femoral artery (segment 2), and popliteal artery (segment 3). Regions of interest (ROIs) were drawn on vessels, muscle, and background, and multiple imaging metrics compared between modalities, including image quality score, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). In the images with a score greater than 2, the lumen area (LA), total vessel area (TVA), and vessel thickness (VT) can be identified using semiautomatic image analysis vessel morphology parameters. Results. All 222 arterial segments were successfully analyzed from 71 patients, after exclusion of three subjects with poor image quality (IQ<2) in segment 3. There were 54 diabetic and 17 nondiabetic patients. Quantitative analysis shows that the CNR difference between diabetic patients and nondiabetic patients was statistically significant for the same segment, while there was no significant difference among the three segments of SNR and CNR. There were a total of 54 diabetics with plaque distribution data, which showed that LA of segments 1 and 2 was higher than that of segment 3. The VWI of segments 1 and 2 was lower than segment 3. Diabetic was associated with vascular WT 3 and WA3, which increased by 0.23 and 0.83 units on average compared without diabetic foot, respectively. Diabetic foot was associated with vascular WT 3, which increased by 0.37 units on average compared without diabetic foot. The incidence of segment 3 plaques was higher than that of segment 1. The incidence of the left and right plaques was different. Conclusions. MR imaging using the DANTE and multicontrast sequence could evaluate plaque morphology, and distribution of lower extremities and the occurrence of diabetic foot development are closely related; it may predict occurrence of PAD with diabetic foot.
ISSN:2314-6141