Finiteness properties of generalized local cohomology modules for minimax modules

Let R be a commutative Noetherian ring, I an ideal of R, M be a finitely generated R-module and t be a non-negative integer. In this paper, we introduce the concept of I, M-minimax R-modules. We show that $ \text{ Hom}_R(R/I,\, H^t_I(M,\, N)/K) $ is I,M-minimax, for all I,M-minimax submodules K of $...

Full description

Bibliographic Details
Main Authors: Sh. Payrovi, I. Khalili-Gorji, Z. Rahimi-Molaei
Format: Article
Language:English
Published: Taylor & Francis Group 2017-01-01
Series:Cogent Mathematics
Subjects:
Online Access:http://dx.doi.org/10.1080/23311835.2017.1327683
id doaj-b2c8ec57bad349e1998338b0c8c392ce
record_format Article
spelling doaj-b2c8ec57bad349e1998338b0c8c392ce2020-11-25T01:33:14ZengTaylor & Francis GroupCogent Mathematics2331-18352017-01-014110.1080/23311835.2017.13276831327683Finiteness properties of generalized local cohomology modules for minimax modulesSh. Payrovi0I. Khalili-Gorji1Z. Rahimi-Molaei2Imam Khomeini International UniversityImam Khomeini International UniversityImam Khomeini International UniversityLet R be a commutative Noetherian ring, I an ideal of R, M be a finitely generated R-module and t be a non-negative integer. In this paper, we introduce the concept of I, M-minimax R-modules. We show that $ \text{ Hom}_R(R/I,\, H^t_I(M,\, N)/K) $ is I,M-minimax, for all I,M-minimax submodules K of $ H^t_I(M,\, N) $, whenever N and $ H_{I}^{0}(M) $, $ H_{I}^{1}(M), \, \cdots , \, H_{I}^{t-1}(M) $ are I, M-minimax R-modules. As consequence, it is shown that $ \text{ Ass}_R H^t_I(M,\, N)/K $ is a finite set.http://dx.doi.org/10.1080/23311835.2017.1327683generalized local cohomologyminimax module
collection DOAJ
language English
format Article
sources DOAJ
author Sh. Payrovi
I. Khalili-Gorji
Z. Rahimi-Molaei
spellingShingle Sh. Payrovi
I. Khalili-Gorji
Z. Rahimi-Molaei
Finiteness properties of generalized local cohomology modules for minimax modules
Cogent Mathematics
generalized local cohomology
minimax module
author_facet Sh. Payrovi
I. Khalili-Gorji
Z. Rahimi-Molaei
author_sort Sh. Payrovi
title Finiteness properties of generalized local cohomology modules for minimax modules
title_short Finiteness properties of generalized local cohomology modules for minimax modules
title_full Finiteness properties of generalized local cohomology modules for minimax modules
title_fullStr Finiteness properties of generalized local cohomology modules for minimax modules
title_full_unstemmed Finiteness properties of generalized local cohomology modules for minimax modules
title_sort finiteness properties of generalized local cohomology modules for minimax modules
publisher Taylor & Francis Group
series Cogent Mathematics
issn 2331-1835
publishDate 2017-01-01
description Let R be a commutative Noetherian ring, I an ideal of R, M be a finitely generated R-module and t be a non-negative integer. In this paper, we introduce the concept of I, M-minimax R-modules. We show that $ \text{ Hom}_R(R/I,\, H^t_I(M,\, N)/K) $ is I,M-minimax, for all I,M-minimax submodules K of $ H^t_I(M,\, N) $, whenever N and $ H_{I}^{0}(M) $, $ H_{I}^{1}(M), \, \cdots , \, H_{I}^{t-1}(M) $ are I, M-minimax R-modules. As consequence, it is shown that $ \text{ Ass}_R H^t_I(M,\, N)/K $ is a finite set.
topic generalized local cohomology
minimax module
url http://dx.doi.org/10.1080/23311835.2017.1327683
work_keys_str_mv AT shpayrovi finitenesspropertiesofgeneralizedlocalcohomologymodulesforminimaxmodules
AT ikhaliligorji finitenesspropertiesofgeneralizedlocalcohomologymodulesforminimaxmodules
AT zrahimimolaei finitenesspropertiesofgeneralizedlocalcohomologymodulesforminimaxmodules
_version_ 1725078608646504448