Finiteness properties of generalized local cohomology modules for minimax modules
Let R be a commutative Noetherian ring, I an ideal of R, M be a finitely generated R-module and t be a non-negative integer. In this paper, we introduce the concept of I, M-minimax R-modules. We show that $ \text{ Hom}_R(R/I,\, H^t_I(M,\, N)/K) $ is I,M-minimax, for all I,M-minimax submodules K of $...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2017-01-01
|
Series: | Cogent Mathematics |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/23311835.2017.1327683 |
id |
doaj-b2c8ec57bad349e1998338b0c8c392ce |
---|---|
record_format |
Article |
spelling |
doaj-b2c8ec57bad349e1998338b0c8c392ce2020-11-25T01:33:14ZengTaylor & Francis GroupCogent Mathematics2331-18352017-01-014110.1080/23311835.2017.13276831327683Finiteness properties of generalized local cohomology modules for minimax modulesSh. Payrovi0I. Khalili-Gorji1Z. Rahimi-Molaei2Imam Khomeini International UniversityImam Khomeini International UniversityImam Khomeini International UniversityLet R be a commutative Noetherian ring, I an ideal of R, M be a finitely generated R-module and t be a non-negative integer. In this paper, we introduce the concept of I, M-minimax R-modules. We show that $ \text{ Hom}_R(R/I,\, H^t_I(M,\, N)/K) $ is I,M-minimax, for all I,M-minimax submodules K of $ H^t_I(M,\, N) $, whenever N and $ H_{I}^{0}(M) $, $ H_{I}^{1}(M), \, \cdots , \, H_{I}^{t-1}(M) $ are I, M-minimax R-modules. As consequence, it is shown that $ \text{ Ass}_R H^t_I(M,\, N)/K $ is a finite set.http://dx.doi.org/10.1080/23311835.2017.1327683generalized local cohomologyminimax module |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sh. Payrovi I. Khalili-Gorji Z. Rahimi-Molaei |
spellingShingle |
Sh. Payrovi I. Khalili-Gorji Z. Rahimi-Molaei Finiteness properties of generalized local cohomology modules for minimax modules Cogent Mathematics generalized local cohomology minimax module |
author_facet |
Sh. Payrovi I. Khalili-Gorji Z. Rahimi-Molaei |
author_sort |
Sh. Payrovi |
title |
Finiteness properties of generalized local cohomology modules for minimax modules |
title_short |
Finiteness properties of generalized local cohomology modules for minimax modules |
title_full |
Finiteness properties of generalized local cohomology modules for minimax modules |
title_fullStr |
Finiteness properties of generalized local cohomology modules for minimax modules |
title_full_unstemmed |
Finiteness properties of generalized local cohomology modules for minimax modules |
title_sort |
finiteness properties of generalized local cohomology modules for minimax modules |
publisher |
Taylor & Francis Group |
series |
Cogent Mathematics |
issn |
2331-1835 |
publishDate |
2017-01-01 |
description |
Let R be a commutative Noetherian ring, I an ideal of R, M be a finitely generated R-module and t be a non-negative integer. In this paper, we introduce the concept of I, M-minimax R-modules. We show that $ \text{ Hom}_R(R/I,\, H^t_I(M,\, N)/K) $ is I,M-minimax, for all I,M-minimax submodules K of $ H^t_I(M,\, N) $, whenever N and $ H_{I}^{0}(M) $, $ H_{I}^{1}(M), \, \cdots , \, H_{I}^{t-1}(M) $ are I, M-minimax R-modules. As consequence, it is shown that $ \text{ Ass}_R H^t_I(M,\, N)/K $ is a finite set. |
topic |
generalized local cohomology minimax module |
url |
http://dx.doi.org/10.1080/23311835.2017.1327683 |
work_keys_str_mv |
AT shpayrovi finitenesspropertiesofgeneralizedlocalcohomologymodulesforminimaxmodules AT ikhaliligorji finitenesspropertiesofgeneralizedlocalcohomologymodulesforminimaxmodules AT zrahimimolaei finitenesspropertiesofgeneralizedlocalcohomologymodulesforminimaxmodules |
_version_ |
1725078608646504448 |