Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.)
This paper presents results of the extensive field campaign CLACE 2010 (Cloud and Aerosol Characterization Experiment) performed in summer 2010 at the Jungfraujoch (JFJ) and the Kleine Scheidegg (KLS) in the Swiss Alps. The main goal of this campaign was to investigate the vertical variability of ae...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2012-08-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/12/7231/2012/acp-12-7231-2012.pdf |
id |
doaj-b2ebc7cf581d4244a8d079b870a49536 |
---|---|
record_format |
Article |
spelling |
doaj-b2ebc7cf581d4244a8d079b870a495362020-11-24T22:44:06ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242012-08-0112157231724910.5194/acp-12-7231-2012Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.)P. ZiegerE. Kienast-SjögrenM. StaraceJ. von BismarckN. BukowieckiU. BaltenspergerF. G. WienholdT. PeterT. RuhtzM. Collaud CoenL. VuilleumierO. MaierE. EmiliC. PoppE. WeingartnerThis paper presents results of the extensive field campaign CLACE 2010 (Cloud and Aerosol Characterization Experiment) performed in summer 2010 at the Jungfraujoch (JFJ) and the Kleine Scheidegg (KLS) in the Swiss Alps. The main goal of this campaign was to investigate the vertical variability of aerosol optical properties around the JFJ and to show the consistency of the different employed measurement techniques considering explicitly the effects of relative humidity (RH) on the aerosol light scattering. Various aerosol optical and microphysical parameters were recorded using in-situ and remote sensing techniques. In-situ measurements of aerosol size distribution, light scattering, light absorption and scattering enhancement due to water uptake were performed at the JFJ at 3580 m a.s.l.. A unique set-up allowed remote sensing measurements of aerosol columnar and vertical properties from the KLS located about 1500 m below and within the line of sight to the JFJ (horizontal distance of approx. 4.5 km). In addition, two satellite retrievals from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the Moderate Resolution Imaging Spectroradiometer (MODIS) as well as back trajectory analyses were added to the comparison to account for a wider geographical context. All in-situ and remote sensing measurements were in clear correspondence. The ambient extinction coefficient measured in situ at the JFJ agreed well with the KLS-based LIDAR (Light Detection and Ranging) retrieval at the altitude-level of the JFJ under plausible assumptions on the LIDAR ratio. However, we can show that the quality of this comparison is affected by orographic effects due to the exposed location of the JFJ on a saddle between two mountains and next to a large glacier. The local RH around the JFJ was often higher than in the optical path of the LIDAR measurement, especially when the wind originated from the south via the glacier, leading to orographic clouds which remained lower than the LIDAR beam. Furthermore, the dominance of long-range transported Saharan dust was observed in all measurements for several days, however only for a shorter time period in the in-situ measurements due to the vertical structure of the dust plume. The optical properties of the aerosol column retrieved from SEVIRI and MODIS showed the same magnitude and a similar temporal evolution as the measurements at the KLS and the JFJ. Remaining differences are attributed to the complex terrain and simplifications in the aerosol retrieval scheme in general.http://www.atmos-chem-phys.net/12/7231/2012/acp-12-7231-2012.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
P. Zieger E. Kienast-Sjögren M. Starace J. von Bismarck N. Bukowiecki U. Baltensperger F. G. Wienhold T. Peter T. Ruhtz M. Collaud Coen L. Vuilleumier O. Maier E. Emili C. Popp E. Weingartner |
spellingShingle |
P. Zieger E. Kienast-Sjögren M. Starace J. von Bismarck N. Bukowiecki U. Baltensperger F. G. Wienhold T. Peter T. Ruhtz M. Collaud Coen L. Vuilleumier O. Maier E. Emili C. Popp E. Weingartner Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.) Atmospheric Chemistry and Physics |
author_facet |
P. Zieger E. Kienast-Sjögren M. Starace J. von Bismarck N. Bukowiecki U. Baltensperger F. G. Wienhold T. Peter T. Ruhtz M. Collaud Coen L. Vuilleumier O. Maier E. Emili C. Popp E. Weingartner |
author_sort |
P. Zieger |
title |
Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.) |
title_short |
Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.) |
title_full |
Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.) |
title_fullStr |
Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.) |
title_full_unstemmed |
Spatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.) |
title_sort |
spatial variation of aerosol optical properties around the high-alpine site jungfraujoch (3580 m a.s.l.) |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2012-08-01 |
description |
This paper presents results of the extensive field campaign CLACE 2010 (Cloud and Aerosol Characterization Experiment) performed in summer 2010 at the Jungfraujoch (JFJ) and the Kleine Scheidegg (KLS) in the Swiss Alps. The main goal of this campaign was to investigate the vertical variability of aerosol optical properties around the JFJ and to show the consistency of the different employed measurement techniques considering explicitly the effects of relative humidity (RH) on the aerosol light scattering. Various aerosol optical and microphysical parameters were recorded using in-situ and remote sensing techniques. In-situ measurements of aerosol size distribution, light scattering, light absorption and scattering enhancement due to water uptake were performed at the JFJ at 3580 m a.s.l.. A unique set-up allowed remote sensing measurements of aerosol columnar and vertical properties from the KLS located about 1500 m below and within the line of sight to the JFJ (horizontal distance of approx. 4.5 km). In addition, two satellite retrievals from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the Moderate Resolution Imaging Spectroradiometer (MODIS) as well as back trajectory analyses were added to the comparison to account for a wider geographical context. All in-situ and remote sensing measurements were in clear correspondence. The ambient extinction coefficient measured in situ at the JFJ agreed well with the KLS-based LIDAR (Light Detection and Ranging) retrieval at the altitude-level of the JFJ under plausible assumptions on the LIDAR ratio. However, we can show that the quality of this comparison is affected by orographic effects due to the exposed location of the JFJ on a saddle between two mountains and next to a large glacier. The local RH around the JFJ was often higher than in the optical path of the LIDAR measurement, especially when the wind originated from the south via the glacier, leading to orographic clouds which remained lower than the LIDAR beam. Furthermore, the dominance of long-range transported Saharan dust was observed in all measurements for several days, however only for a shorter time period in the in-situ measurements due to the vertical structure of the dust plume. The optical properties of the aerosol column retrieved from SEVIRI and MODIS showed the same magnitude and a similar temporal evolution as the measurements at the KLS and the JFJ. Remaining differences are attributed to the complex terrain and simplifications in the aerosol retrieval scheme in general. |
url |
http://www.atmos-chem-phys.net/12/7231/2012/acp-12-7231-2012.pdf |
work_keys_str_mv |
AT pzieger spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT ekienastsjogren spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT mstarace spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT jvonbismarck spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT nbukowiecki spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT ubaltensperger spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT fgwienhold spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT tpeter spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT truhtz spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT mcollaudcoen spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT lvuilleumier spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT omaier spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT eemili spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT cpopp spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl AT eweingartner spatialvariationofaerosolopticalpropertiesaroundthehighalpinesitejungfraujoch3580masl |
_version_ |
1725692931880255488 |