Boundary layer flow of MHD tangent hyperbolic nanofluid over a stretching sheet: A numerical investigation

This article presents the two-dimensional flow of MHD hyperbolic tangent fluid with nanoparticles towards a stretching surface. The mathematical modelling of current flow analysis yields the nonlinear set of partial differential equations which then are reduce to ordinary differential equations by u...

Full description

Bibliographic Details
Main Authors: Mair Khan, Arif Hussain, M.Y. Malik, T. Salahuddin, Farzana Khan
Format: Article
Language:English
Published: Elsevier 2017-01-01
Series:Results in Physics
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379717311907
Description
Summary:This article presents the two-dimensional flow of MHD hyperbolic tangent fluid with nanoparticles towards a stretching surface. The mathematical modelling of current flow analysis yields the nonlinear set of partial differential equations which then are reduce to ordinary differential equations by using suitable scaling transforms. Then resulting equations are solved by using shooting technique. The behaviour of the involved physical parameters (Weissenberg number We, Hartmann number M, Prandtl number Pr, Brownian motion parameter Nb, Lewis number Leand thermophoresis number Nt) on velocity, temperature and concentration are interpreted in detail. Additionally, local skin friction, local Nusselt number and local Sherwood number are computed and analyzed. It has been explored that Weissenberg number and Hartmann number are decelerate fluid motion. Brownian motion and thermophoresis both enhance the fluid temperature. Local Sherwood number is increasing function whereas Nusselt number is reducing function for increasing values of Brownian motion parameter Nb, Prandtl number Pr, thermophoresis parameter Nt and Lewis number Le. Additionally, computed results are compared with existing literature to validate the accuracy of solution, one can see that present results have quite resemblance with reported data. Keywords: Tangent hyperbolic fluid, MHD, Nanofluid, Stretching sheet, Shooting method (Cash and Crap)
ISSN:2211-3797