Occurrence of favorable local habitat conditions in an atypical landscape: Evidence of Japanese pika microrefugia

Species distribution models can be used to predict favorable areas for population persistence under contemporary climate change. However, these predictions are often based on broad-scale environmental variables and lack consideration of local-scale environments. Small areas where species are protect...

Full description

Bibliographic Details
Main Authors: Tomoki Sakiyama, Junko Morimoto, Osamu Watanabe, Nobuyuki Watanabe, Futoshi Nakamura
Format: Article
Language:English
Published: Elsevier 2021-06-01
Series:Global Ecology and Conservation
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2351989421000597
id doaj-b419b99274164761a354fb6eddd31257
record_format Article
spelling doaj-b419b99274164761a354fb6eddd312572021-05-28T05:02:06ZengElsevierGlobal Ecology and Conservation2351-98942021-06-0127e01509Occurrence of favorable local habitat conditions in an atypical landscape: Evidence of Japanese pika microrefugiaTomoki Sakiyama0Junko Morimoto1Osamu Watanabe2Nobuyuki Watanabe3Futoshi Nakamura4Laboratory of Ecosystem Management, Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan; Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan; Corresponding author. Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.Laboratory of Ecosystem Management, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-8589, JapanSapporo Nature Research and Interpretation Office, 1-45 Chuo-1-jo-7, Atsubetsu-ku, Sapporo, Hokkaido, 004-0051, JapanSapporo Nature Research and Interpretation Office, 1-45 Chuo-1-jo-7, Atsubetsu-ku, Sapporo, Hokkaido, 004-0051, JapanLaboratory of Ecosystem Management, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-8589, JapanSpecies distribution models can be used to predict favorable areas for population persistence under contemporary climate change. However, these predictions are often based on broad-scale environmental variables and lack consideration of local-scale environments. Small areas where species are protected from unfavorable regional conditions by using locally favorable conditions, which are called microrefugia, are therefore often overlooked in current approaches used to conserve biodiversity. Here, using a two-step approach, we explored the existence of microrefugia of a cold-adapted mammal, the Japanese pika (Ochotona hyperborea yesoensis). We first identified broad-scale factors related to Japanese pika distribution and distinguished broadly favorable and unfavorable areas. Then, we assessed whether environmental conditions favorable to Japanese pikas existed at the local scale in habitats where they were present in unfavorable areas by focusing on thermal, vegetative, and ground conditions. We found that the Japanese pika distribution was substantially restricted by the mean summer temperature, suggesting that lower elevation areas were unfavorable for persistence. However, subsequent local-scale measurements indicated that while the average summer temperature in the Japanese pika habitats was higher in unfavorable areas than in favorable areas, rock interstices prevented the average and acute heat stress from reaching the thresholds known to limit Japanese pika activity. Moreover, summer thermal conditions in rock interstices in unfavorable areas were more stable than those in favorable areas. Taken together, our results indicate that lower-elevation areas are predicted to be unfavorable due to the broad-scale climate, but microclimates that allow Japanese pikas to behaviorally thermoregulate exist at the local scale, thereby suggesting the existence of microrefugia. In addition, winter thermal conditions did not differ among all thermal indices between the areas, and unfavorable areas possessed more developed vegetation and fewer rock interstices. Our results highlight the importance of examining local habitat conditions and suggest that using only broad-scale assessments may risk overlooking areas with a high potential for conservation. In the case of Japanese pikas, cool and stable microclimates at lower elevations were found to possess high conservation value in terms of enhancing population persistence under climate change.http://www.sciencedirect.com/science/article/pii/S2351989421000597Climate changeMicroclimateMicrorefugiaOchotonaPikaSpecies distribution model
collection DOAJ
language English
format Article
sources DOAJ
author Tomoki Sakiyama
Junko Morimoto
Osamu Watanabe
Nobuyuki Watanabe
Futoshi Nakamura
spellingShingle Tomoki Sakiyama
Junko Morimoto
Osamu Watanabe
Nobuyuki Watanabe
Futoshi Nakamura
Occurrence of favorable local habitat conditions in an atypical landscape: Evidence of Japanese pika microrefugia
Global Ecology and Conservation
Climate change
Microclimate
Microrefugia
Ochotona
Pika
Species distribution model
author_facet Tomoki Sakiyama
Junko Morimoto
Osamu Watanabe
Nobuyuki Watanabe
Futoshi Nakamura
author_sort Tomoki Sakiyama
title Occurrence of favorable local habitat conditions in an atypical landscape: Evidence of Japanese pika microrefugia
title_short Occurrence of favorable local habitat conditions in an atypical landscape: Evidence of Japanese pika microrefugia
title_full Occurrence of favorable local habitat conditions in an atypical landscape: Evidence of Japanese pika microrefugia
title_fullStr Occurrence of favorable local habitat conditions in an atypical landscape: Evidence of Japanese pika microrefugia
title_full_unstemmed Occurrence of favorable local habitat conditions in an atypical landscape: Evidence of Japanese pika microrefugia
title_sort occurrence of favorable local habitat conditions in an atypical landscape: evidence of japanese pika microrefugia
publisher Elsevier
series Global Ecology and Conservation
issn 2351-9894
publishDate 2021-06-01
description Species distribution models can be used to predict favorable areas for population persistence under contemporary climate change. However, these predictions are often based on broad-scale environmental variables and lack consideration of local-scale environments. Small areas where species are protected from unfavorable regional conditions by using locally favorable conditions, which are called microrefugia, are therefore often overlooked in current approaches used to conserve biodiversity. Here, using a two-step approach, we explored the existence of microrefugia of a cold-adapted mammal, the Japanese pika (Ochotona hyperborea yesoensis). We first identified broad-scale factors related to Japanese pika distribution and distinguished broadly favorable and unfavorable areas. Then, we assessed whether environmental conditions favorable to Japanese pikas existed at the local scale in habitats where they were present in unfavorable areas by focusing on thermal, vegetative, and ground conditions. We found that the Japanese pika distribution was substantially restricted by the mean summer temperature, suggesting that lower elevation areas were unfavorable for persistence. However, subsequent local-scale measurements indicated that while the average summer temperature in the Japanese pika habitats was higher in unfavorable areas than in favorable areas, rock interstices prevented the average and acute heat stress from reaching the thresholds known to limit Japanese pika activity. Moreover, summer thermal conditions in rock interstices in unfavorable areas were more stable than those in favorable areas. Taken together, our results indicate that lower-elevation areas are predicted to be unfavorable due to the broad-scale climate, but microclimates that allow Japanese pikas to behaviorally thermoregulate exist at the local scale, thereby suggesting the existence of microrefugia. In addition, winter thermal conditions did not differ among all thermal indices between the areas, and unfavorable areas possessed more developed vegetation and fewer rock interstices. Our results highlight the importance of examining local habitat conditions and suggest that using only broad-scale assessments may risk overlooking areas with a high potential for conservation. In the case of Japanese pikas, cool and stable microclimates at lower elevations were found to possess high conservation value in terms of enhancing population persistence under climate change.
topic Climate change
Microclimate
Microrefugia
Ochotona
Pika
Species distribution model
url http://www.sciencedirect.com/science/article/pii/S2351989421000597
work_keys_str_mv AT tomokisakiyama occurrenceoffavorablelocalhabitatconditionsinanatypicallandscapeevidenceofjapanesepikamicrorefugia
AT junkomorimoto occurrenceoffavorablelocalhabitatconditionsinanatypicallandscapeevidenceofjapanesepikamicrorefugia
AT osamuwatanabe occurrenceoffavorablelocalhabitatconditionsinanatypicallandscapeevidenceofjapanesepikamicrorefugia
AT nobuyukiwatanabe occurrenceoffavorablelocalhabitatconditionsinanatypicallandscapeevidenceofjapanesepikamicrorefugia
AT futoshinakamura occurrenceoffavorablelocalhabitatconditionsinanatypicallandscapeevidenceofjapanesepikamicrorefugia
_version_ 1721424690913738752