Jitter Detection and Image Restoration Based on Generative Adversarial Networks in Satellite Images

High-resolution satellite images (HRSIs) obtained from onboard satellite linear array cameras suffer from geometric disturbance in the presence of attitude jitter. Therefore, detection and compensation of satellite attitude jitter are crucial to reduce the geopositioning error and to improve the geo...

Full description

Bibliographic Details
Main Authors: Zilin Wang, Zhaoxiang Zhang, Limin Dong, Guodong Xu
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/14/4693
Description
Summary:High-resolution satellite images (HRSIs) obtained from onboard satellite linear array cameras suffer from geometric disturbance in the presence of attitude jitter. Therefore, detection and compensation of satellite attitude jitter are crucial to reduce the geopositioning error and to improve the geometric accuracy of HRSIs. In this work, a generative adversarial network (GAN) architecture is proposed to automatically learn and correct the deformed scene features from a single remote sensing image. In the proposed GAN, a convolutional neural network (CNN) is designed to discriminate the inputs, and another CNN is used to generate so-called fake inputs. To explore the usefulness and effectiveness of a GAN for jitter detection, the proposed GANs are trained on part of the PatternNet dataset and tested on three popular remote sensing datasets, along with a deformed Yaogan-26 satellite image. Several experiments show that the proposed model provides competitive results. The proposed GAN reveals the enormous potential of GAN-based methods for the analysis of attitude jitter from remote sensing images.
ISSN:1424-8220