Some Estimates for Generalized Riemann-Liouville Fractional Integrals of Exponentially Convex Functions and Their Applications

In the present paper, we investigate some Hermite-Hadamard <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">HH</mi> <mo>)</mo> </mrow> </semantics> </math>...

Full description

Bibliographic Details
Main Authors: Saima Rashid, Thabet Abdeljawad, Fahd Jarad, Muhammad Aslam Noor
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/9/807
Description
Summary:In the present paper, we investigate some Hermite-Hadamard <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">HH</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> inequalities related to generalized Riemann-Liouville fractional integral <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi mathvariant="script">GRLFI</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> via exponentially convex functions. We also show the fundamental identity for <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">GRLFI</mi> </semantics> </math> </inline-formula> having the first order derivative of a given exponentially convex function. Monotonicity and exponentially convexity of functions are used with some traditional and forthright inequalities. In the application part, we give examples and new inequalities for the special means.
ISSN:2227-7390