ML-Type EM-Based Estimation of Fast Time-Varying Frequency-Selective Channels Over SIMO OFDM Transmissions
This paper investigates the problem of fast time-varying frequency-selective (i.e., multipath) channel estimation over single-input multiple-output orthogonal frequency-division multiplexing (SIMO OFDM)-type transmissions. We do so by tracking the variations of each complex gain coefficient using a...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8864991/ |
id |
doaj-b51d78198cfc47259d2bb48fc34c002f |
---|---|
record_format |
Article |
spelling |
doaj-b51d78198cfc47259d2bb48fc34c002f2021-03-29T23:55:48ZengIEEEIEEE Access2169-35362019-01-01714826514827710.1109/ACCESS.2019.29466158864991ML-Type EM-Based Estimation of Fast Time-Varying Frequency-Selective Channels Over SIMO OFDM TransmissionsSouheib Ben Amor0https://orcid.org/0000-0002-3441-3466Sofiene Affes1https://orcid.org/0000-0002-1729-3503Faouzi Bellili2Dush Nalin Jayakody3https://orcid.org/0000-0002-7004-2930INRS-EMT, Université du Québec, Montréal, QC, CanadaINRS-EMT, Université du Québec, Montréal, QC, CanadaDepartment of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, CanadaSchool of Computer Science and Robotics, National Research Tomsk Polytechnic University, Tomsk, RussiaThis paper investigates the problem of fast time-varying frequency-selective (i.e., multipath) channel estimation over single-input multiple-output orthogonal frequency-division multiplexing (SIMO OFDM)-type transmissions. We do so by tracking the variations of each complex gain coefficient using a polynomial-in-time expansion. To that end, we derive the log-likelihood function (LLF) both in the data-aided (DA) and non-data-aided (NDA) cases. The DA maximum likelihood (ML) estimates over fast SIMO OFDM channels are derived here for the first time in closed-form expressions and hereby shown to be limited to applying over each receive antenna the DA least squares (LS) estimator tailored in [1] to fast SISO OFDM channels. This DA ML is used to initialize periodically, over a relatively large number of data blocks (i.e., with further reduced and relatively close-to-negligible pilot overhead compared to DA ML), a new expectation maximization (EM) ML-type solution we developed here in the NDA case to iteratively maximize the LLF. We also introduce an alternative regularized DA ML (RDM) initialization solution no longer requesting - in contrast to DA ML - more per-carrier pilot frames than the number of paths to further reduce overhead without incurring significant performance losses. Simulation results show that the proposed hybrid ML-EM estimator (i.e., combines all new NDA ML-EM and DA ML or RDM versions) converges within few iterations, thereby providing very accurate estimates of all multipath channel gains. Most importantly, this increased estimation accuracy translates into very significant BER and link-level per-carrier throughput gains over the best representative benchmark solution available so far for the problem at hand, the SISO DA LS technique in [1] with its new generalization here to SIMO systems.https://ieeexplore.ieee.org/document/8864991/Channel estimationtime-varying channel (TVC)OFDMmulti-carriersingle-input multiple-output (SIMO)single-input single-output (SISO) |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Souheib Ben Amor Sofiene Affes Faouzi Bellili Dush Nalin Jayakody |
spellingShingle |
Souheib Ben Amor Sofiene Affes Faouzi Bellili Dush Nalin Jayakody ML-Type EM-Based Estimation of Fast Time-Varying Frequency-Selective Channels Over SIMO OFDM Transmissions IEEE Access Channel estimation time-varying channel (TVC) OFDM multi-carrier single-input multiple-output (SIMO) single-input single-output (SISO) |
author_facet |
Souheib Ben Amor Sofiene Affes Faouzi Bellili Dush Nalin Jayakody |
author_sort |
Souheib Ben Amor |
title |
ML-Type EM-Based Estimation of Fast Time-Varying Frequency-Selective Channels Over SIMO OFDM Transmissions |
title_short |
ML-Type EM-Based Estimation of Fast Time-Varying Frequency-Selective Channels Over SIMO OFDM Transmissions |
title_full |
ML-Type EM-Based Estimation of Fast Time-Varying Frequency-Selective Channels Over SIMO OFDM Transmissions |
title_fullStr |
ML-Type EM-Based Estimation of Fast Time-Varying Frequency-Selective Channels Over SIMO OFDM Transmissions |
title_full_unstemmed |
ML-Type EM-Based Estimation of Fast Time-Varying Frequency-Selective Channels Over SIMO OFDM Transmissions |
title_sort |
ml-type em-based estimation of fast time-varying frequency-selective channels over simo ofdm transmissions |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2019-01-01 |
description |
This paper investigates the problem of fast time-varying frequency-selective (i.e., multipath) channel estimation over single-input multiple-output orthogonal frequency-division multiplexing (SIMO OFDM)-type transmissions. We do so by tracking the variations of each complex gain coefficient using a polynomial-in-time expansion. To that end, we derive the log-likelihood function (LLF) both in the data-aided (DA) and non-data-aided (NDA) cases. The DA maximum likelihood (ML) estimates over fast SIMO OFDM channels are derived here for the first time in closed-form expressions and hereby shown to be limited to applying over each receive antenna the DA least squares (LS) estimator tailored in [1] to fast SISO OFDM channels. This DA ML is used to initialize periodically, over a relatively large number of data blocks (i.e., with further reduced and relatively close-to-negligible pilot overhead compared to DA ML), a new expectation maximization (EM) ML-type solution we developed here in the NDA case to iteratively maximize the LLF. We also introduce an alternative regularized DA ML (RDM) initialization solution no longer requesting - in contrast to DA ML - more per-carrier pilot frames than the number of paths to further reduce overhead without incurring significant performance losses. Simulation results show that the proposed hybrid ML-EM estimator (i.e., combines all new NDA ML-EM and DA ML or RDM versions) converges within few iterations, thereby providing very accurate estimates of all multipath channel gains. Most importantly, this increased estimation accuracy translates into very significant BER and link-level per-carrier throughput gains over the best representative benchmark solution available so far for the problem at hand, the SISO DA LS technique in [1] with its new generalization here to SIMO systems. |
topic |
Channel estimation time-varying channel (TVC) OFDM multi-carrier single-input multiple-output (SIMO) single-input single-output (SISO) |
url |
https://ieeexplore.ieee.org/document/8864991/ |
work_keys_str_mv |
AT souheibbenamor mltypeembasedestimationoffasttimevaryingfrequencyselectivechannelsoversimoofdmtransmissions AT sofieneaffes mltypeembasedestimationoffasttimevaryingfrequencyselectivechannelsoversimoofdmtransmissions AT faouzibellili mltypeembasedestimationoffasttimevaryingfrequencyselectivechannelsoversimoofdmtransmissions AT dushnalinjayakody mltypeembasedestimationoffasttimevaryingfrequencyselectivechannelsoversimoofdmtransmissions |
_version_ |
1724188910132658176 |