Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy

Umbilical cord blood is a traditional and convenient source of cells for hematopoietic stem cell transplantation. Thymic regulatory T cells (Tregs) are also present in cord blood, and there is growing interest in the use of autologous Tregs to provide a low-risk, fully human leukocyte antigen (HLA)-...

Full description

Bibliographic Details
Main Authors: Howard R. Seay, Amy L. Putnam, Judit Cserny, Amanda L. Posgai, Emma H. Rosenau, John R. Wingard, Kate F. Girard, Morey Kraus, Angela P. Lares, Heather L. Brown, Katherine S. Brown, Kristi T. Balavage, Leeana D. Peters, Ashley N. Bushdorf, Mark A. Atkinson, Jeffrey A. Bluestone, Michael J. Haller, Todd M. Brusko
Format: Article
Language:English
Published: Elsevier 2017-03-01
Series:Molecular Therapy: Methods & Clinical Development
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S232905011630136X
id doaj-b5555cc4f2ea4d9793b448e24da450ff
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Howard R. Seay
Amy L. Putnam
Judit Cserny
Amanda L. Posgai
Emma H. Rosenau
John R. Wingard
Kate F. Girard
Morey Kraus
Angela P. Lares
Heather L. Brown
Katherine S. Brown
Kristi T. Balavage
Leeana D. Peters
Ashley N. Bushdorf
Mark A. Atkinson
Jeffrey A. Bluestone
Michael J. Haller
Todd M. Brusko
spellingShingle Howard R. Seay
Amy L. Putnam
Judit Cserny
Amanda L. Posgai
Emma H. Rosenau
John R. Wingard
Kate F. Girard
Morey Kraus
Angela P. Lares
Heather L. Brown
Katherine S. Brown
Kristi T. Balavage
Leeana D. Peters
Ashley N. Bushdorf
Mark A. Atkinson
Jeffrey A. Bluestone
Michael J. Haller
Todd M. Brusko
Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy
Molecular Therapy: Methods & Clinical Development
autoimmunity
cord blood
adoptive cell transfer
regulatory T cell
type 1 diabetes
T cell receptor
good manufacturing practices
author_facet Howard R. Seay
Amy L. Putnam
Judit Cserny
Amanda L. Posgai
Emma H. Rosenau
John R. Wingard
Kate F. Girard
Morey Kraus
Angela P. Lares
Heather L. Brown
Katherine S. Brown
Kristi T. Balavage
Leeana D. Peters
Ashley N. Bushdorf
Mark A. Atkinson
Jeffrey A. Bluestone
Michael J. Haller
Todd M. Brusko
author_sort Howard R. Seay
title Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy
title_short Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy
title_full Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy
title_fullStr Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy
title_full_unstemmed Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy
title_sort expansion of human tregs from cryopreserved umbilical cord blood for gmp-compliant autologous adoptive cell transfer therapy
publisher Elsevier
series Molecular Therapy: Methods & Clinical Development
issn 2329-0501
publishDate 2017-03-01
description Umbilical cord blood is a traditional and convenient source of cells for hematopoietic stem cell transplantation. Thymic regulatory T cells (Tregs) are also present in cord blood, and there is growing interest in the use of autologous Tregs to provide a low-risk, fully human leukocyte antigen (HLA)-matched cell product for treating autoimmune diseases, such as type 1 diabetes. Here, we describe a good manufacturing practice (GMP)-compatible Treg expansion protocol using fluorescence-activated cell sorting, resulting in a mean 2,092-fold expansion of Tregs over a 16-day culture for a median yield of 1.26 × 109 Tregs from single-donor cryopreserved units. The resulting Tregs passed prior clinical trial release criteria for Treg purity and sterility, including additional rigorous assessments of FOXP3 and Helios expression and epigenetic analysis of the FOXP3 Treg-specific demethylated region (TSDR). Compared with expanded adult peripheral blood Tregs, expanded cord blood Tregs remained more naive, as assessed by continued expression of CD45RA, produced reduced IFN-γ following activation, and effectively inhibited responder T cell proliferation. Immunosequencing of the T cell receptor revealed a remarkably diverse receptor repertoire within cord blood Tregs that was maintained following in vitro expansion. These data support the feasibility of generating GMP-compliant Tregs from cord blood for adoptive cell transfer therapies and highlight potential advantages in terms of safety, phenotypic stability, autoantigen specificity, and tissue distribution.
topic autoimmunity
cord blood
adoptive cell transfer
regulatory T cell
type 1 diabetes
T cell receptor
good manufacturing practices
url http://www.sciencedirect.com/science/article/pii/S232905011630136X
work_keys_str_mv AT howardrseay expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT amylputnam expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT juditcserny expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT amandalposgai expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT emmahrosenau expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT johnrwingard expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT katefgirard expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT moreykraus expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT angelaplares expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT heatherlbrown expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT katherinesbrown expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT kristitbalavage expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT leeanadpeters expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT ashleynbushdorf expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT markaatkinson expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT jeffreyabluestone expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT michaeljhaller expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
AT toddmbrusko expansionofhumantregsfromcryopreservedumbilicalcordbloodforgmpcompliantautologousadoptivecelltransfertherapy
_version_ 1716777347499163648
spelling doaj-b5555cc4f2ea4d9793b448e24da450ff2020-11-24T21:01:39ZengElsevierMolecular Therapy: Methods & Clinical Development2329-05012017-03-014C17819110.1016/j.omtm.2016.12.003Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer TherapyHoward R. Seay0Amy L. Putnam1Judit Cserny2Amanda L. Posgai3Emma H. Rosenau4John R. Wingard5Kate F. Girard6Morey Kraus7Angela P. Lares8Heather L. Brown9Katherine S. Brown10Kristi T. Balavage11Leeana D. Peters12Ashley N. Bushdorf13Mark A. Atkinson14Jeffrey A. Bluestone15Michael J. Haller16Todd M. Brusko17Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USADiabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USADepartment of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USADepartment of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USADivision of Hematology and Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USADivision of Hematology and Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USAViaCord, LLC, Waltham, MA 02451, USAViaCord, LLC, Waltham, MA 02451, USADiabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USACbr Systems, Inc., San Bruno, CA 94066, USACbr Systems, Inc., San Bruno, CA 94066, USADepartment of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USADepartment of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USADepartment of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USADepartment of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USADiabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USADepartment of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USADepartment of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USAUmbilical cord blood is a traditional and convenient source of cells for hematopoietic stem cell transplantation. Thymic regulatory T cells (Tregs) are also present in cord blood, and there is growing interest in the use of autologous Tregs to provide a low-risk, fully human leukocyte antigen (HLA)-matched cell product for treating autoimmune diseases, such as type 1 diabetes. Here, we describe a good manufacturing practice (GMP)-compatible Treg expansion protocol using fluorescence-activated cell sorting, resulting in a mean 2,092-fold expansion of Tregs over a 16-day culture for a median yield of 1.26 × 109 Tregs from single-donor cryopreserved units. The resulting Tregs passed prior clinical trial release criteria for Treg purity and sterility, including additional rigorous assessments of FOXP3 and Helios expression and epigenetic analysis of the FOXP3 Treg-specific demethylated region (TSDR). Compared with expanded adult peripheral blood Tregs, expanded cord blood Tregs remained more naive, as assessed by continued expression of CD45RA, produced reduced IFN-γ following activation, and effectively inhibited responder T cell proliferation. Immunosequencing of the T cell receptor revealed a remarkably diverse receptor repertoire within cord blood Tregs that was maintained following in vitro expansion. These data support the feasibility of generating GMP-compliant Tregs from cord blood for adoptive cell transfer therapies and highlight potential advantages in terms of safety, phenotypic stability, autoantigen specificity, and tissue distribution.http://www.sciencedirect.com/science/article/pii/S232905011630136Xautoimmunitycord bloodadoptive cell transferregulatory T celltype 1 diabetesT cell receptorgood manufacturing practices