Summary: | <em>Background:</em> The pandemic coronavirus disease 2019 (COVID-19) has spread and caused enormous and serious damages to many countries worldwide. One of the most typical interventions is the social distancing such as lockdown that would contribute to reduce the number of contacts among undiagnosed individuals. However, prolongation of the period of such a restrictive intervention could hugely affect the social and economic systems, and the outbreak will come back if the strong social distancing policy will end earlier due to the economic damage. Therefore, the social distancing policy should be followed by massive testing accompanied with quarantine to eradicate the infection. <em>Methods:</em> In this paper, we construct a mathematical model and discuss the effect of massive testing with quarantine, which would be less likely to affect the social and economic systems, and its efficacy has been proved in South Korea, Taiwan, Vietnam and Hong Kong. <em>Results:</em> By numerical calculation, we show that the control reproduction number is monotone decreasing and convex downward with respect to the testing rate, which implies that the improvement of the testing rate would highly contribute to reduce the epidemic size if the original testing rate is small. Moreover, we show that the recurrence of the COVID-19 epidemic in Japan could be possible after the lifting of the state of emergency if there is no massive testing and quarantine. <em>Conclusions:</em> If we have entered into an explosive phase of the epidemic, the massive testing could be a strong tool to prevent the disease as long as the positively reacted individuals will be effectively quarantined, no matter whether the positive reaction is pseudo or not. Since total population could be seen as a superposition of smaller communities, we could understand how testing and quarantine policy might be powerful to control the disease.
|