Compact Laser Collimation System for Simultaneous Measurement of Five-Degree-of-Freedom Motion Errors

A compact laser collimation system is presented for the simultaneous measurement of five-degree-of-freedom motion errors. The optical configuration of the proposed system is designed, and the principle of the measurement of five-degree-of-freedom errors is described in detail. The resolution of the...

Full description

Bibliographic Details
Main Authors: Chuang Sun, Sheng Cai, Yusheng Liu, Yanfeng Qiao
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/15/5057
id doaj-b59c9af94bf740ec84ef3a08971b9208
record_format Article
spelling doaj-b59c9af94bf740ec84ef3a08971b92082020-11-25T01:26:52ZengMDPI AGApplied Sciences2076-34172020-07-01105057505710.3390/app10155057Compact Laser Collimation System for Simultaneous Measurement of Five-Degree-of-Freedom Motion ErrorsChuang Sun0Sheng Cai1Yusheng Liu2Yanfeng Qiao3Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, ChinaChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, ChinaChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, ChinaChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, ChinaA compact laser collimation system is presented for the simultaneous measurement of five-degree-of-freedom motion errors. The optical configuration of the proposed system is designed, and the principle of the measurement of five-degree-of-freedom errors is described in detail. The resolution of the roll and the horizontal straightness is doubled compared with other laser collimation methods. A common optical path compensation method is provided to detect light drift in real time and compensate for straightness and angle errors. An experimental setup is constructed, and a series of experiments are performed to verify the feasibility and stability of the system. Compared with commercial instruments, the pitch and yaw residuals are <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>±</mo> <mn>2.5</mn> </mrow> <mrow> <mo>″</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>±</mo> <mn>3.5</mn> </mrow> <mrow> <mo>″</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> without correction, and the residuals are <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>±</mo> <mn>1.9</mn> </mrow> <mrow> <mo>″</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>±</mo> <mn>2.8</mn> </mrow> <mrow> <mo>″</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> after correction, respectively. The comparison deviations of the horizontal straightness and vertical straightness changed from <inline-formula> <math display="inline"> <semantics> <mrow> <mo>±</mo> <mn>4.8</mn> <mo> </mo> <mi mathvariant="sans-serif">μ</mi> </mrow> </semantics> </math> </inline-formula>m to <inline-formula> <math display="inline"> <semantics> <mrow> <mo>±</mo> <mn>2.8</mn> </mrow> </semantics> </math> </inline-formula> μm and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>±</mo> <mn>5.9</mn> </mrow> </semantics> </math> </inline-formula> μm to <inline-formula> <math display="inline"> <semantics> <mrow> <mo>±</mo> <mn>3.6</mn> </mrow> </semantics> </math> </inline-formula> μm, respectively. The comparison deviation of the roll is <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>±</mo> <mn>4.3</mn> </mrow> <mrow> <mo>″</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula>. The experimental results show that the data of the five-degree-of-freedom measurement system obtained are largely the same as the measurement data of commercial instruments. The common optical path compensation can effectively improve the measurement accuracy of the system.https://www.mdpi.com/2076-3417/10/15/50575DOF motion errorslaser collimationcommon optical path
collection DOAJ
language English
format Article
sources DOAJ
author Chuang Sun
Sheng Cai
Yusheng Liu
Yanfeng Qiao
spellingShingle Chuang Sun
Sheng Cai
Yusheng Liu
Yanfeng Qiao
Compact Laser Collimation System for Simultaneous Measurement of Five-Degree-of-Freedom Motion Errors
Applied Sciences
5DOF motion errors
laser collimation
common optical path
author_facet Chuang Sun
Sheng Cai
Yusheng Liu
Yanfeng Qiao
author_sort Chuang Sun
title Compact Laser Collimation System for Simultaneous Measurement of Five-Degree-of-Freedom Motion Errors
title_short Compact Laser Collimation System for Simultaneous Measurement of Five-Degree-of-Freedom Motion Errors
title_full Compact Laser Collimation System for Simultaneous Measurement of Five-Degree-of-Freedom Motion Errors
title_fullStr Compact Laser Collimation System for Simultaneous Measurement of Five-Degree-of-Freedom Motion Errors
title_full_unstemmed Compact Laser Collimation System for Simultaneous Measurement of Five-Degree-of-Freedom Motion Errors
title_sort compact laser collimation system for simultaneous measurement of five-degree-of-freedom motion errors
publisher MDPI AG
series Applied Sciences
issn 2076-3417
publishDate 2020-07-01
description A compact laser collimation system is presented for the simultaneous measurement of five-degree-of-freedom motion errors. The optical configuration of the proposed system is designed, and the principle of the measurement of five-degree-of-freedom errors is described in detail. The resolution of the roll and the horizontal straightness is doubled compared with other laser collimation methods. A common optical path compensation method is provided to detect light drift in real time and compensate for straightness and angle errors. An experimental setup is constructed, and a series of experiments are performed to verify the feasibility and stability of the system. Compared with commercial instruments, the pitch and yaw residuals are <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>±</mo> <mn>2.5</mn> </mrow> <mrow> <mo>″</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>±</mo> <mn>3.5</mn> </mrow> <mrow> <mo>″</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> without correction, and the residuals are <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>±</mo> <mn>1.9</mn> </mrow> <mrow> <mo>″</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>±</mo> <mn>2.8</mn> </mrow> <mrow> <mo>″</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> after correction, respectively. The comparison deviations of the horizontal straightness and vertical straightness changed from <inline-formula> <math display="inline"> <semantics> <mrow> <mo>±</mo> <mn>4.8</mn> <mo> </mo> <mi mathvariant="sans-serif">μ</mi> </mrow> </semantics> </math> </inline-formula>m to <inline-formula> <math display="inline"> <semantics> <mrow> <mo>±</mo> <mn>2.8</mn> </mrow> </semantics> </math> </inline-formula> μm and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>±</mo> <mn>5.9</mn> </mrow> </semantics> </math> </inline-formula> μm to <inline-formula> <math display="inline"> <semantics> <mrow> <mo>±</mo> <mn>3.6</mn> </mrow> </semantics> </math> </inline-formula> μm, respectively. The comparison deviation of the roll is <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>±</mo> <mn>4.3</mn> </mrow> <mrow> <mo>″</mo> </mrow> </msup> </mrow> </semantics> </math> </inline-formula>. The experimental results show that the data of the five-degree-of-freedom measurement system obtained are largely the same as the measurement data of commercial instruments. The common optical path compensation can effectively improve the measurement accuracy of the system.
topic 5DOF motion errors
laser collimation
common optical path
url https://www.mdpi.com/2076-3417/10/15/5057
work_keys_str_mv AT chuangsun compactlasercollimationsystemforsimultaneousmeasurementoffivedegreeoffreedommotionerrors
AT shengcai compactlasercollimationsystemforsimultaneousmeasurementoffivedegreeoffreedommotionerrors
AT yushengliu compactlasercollimationsystemforsimultaneousmeasurementoffivedegreeoffreedommotionerrors
AT yanfengqiao compactlasercollimationsystemforsimultaneousmeasurementoffivedegreeoffreedommotionerrors
_version_ 1725108430971076608