Gas–particle partitioning of polyol tracers at a suburban site in Nanjing, east China: increased partitioning to the particle phase

<p>Gas–particle partitioning of water-soluble organic compounds plays a significant role in influencing the formation, transport, and lifetime of organic aerosols in the atmosphere, but is poorly characterized. In this work, gas- and particle-phase concentrations of isoprene oxidation products...

Full description

Bibliographic Details
Main Authors: C. Qin, Y. Gou, Y. Wang, Y. Mao, H. Liao, Q. Wang, M. Xie
Format: Article
Language:English
Published: Copernicus Publications 2021-08-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/12141/2021/acp-21-12141-2021.pdf
id doaj-b5d7a966d75541009232ce879982450b
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author C. Qin
Y. Gou
Y. Wang
Y. Mao
H. Liao
Q. Wang
M. Xie
spellingShingle C. Qin
Y. Gou
Y. Wang
Y. Mao
H. Liao
Q. Wang
M. Xie
Gas–particle partitioning of polyol tracers at a suburban site in Nanjing, east China: increased partitioning to the particle phase
Atmospheric Chemistry and Physics
author_facet C. Qin
Y. Gou
Y. Wang
Y. Mao
H. Liao
Q. Wang
M. Xie
author_sort C. Qin
title Gas–particle partitioning of polyol tracers at a suburban site in Nanjing, east China: increased partitioning to the particle phase
title_short Gas–particle partitioning of polyol tracers at a suburban site in Nanjing, east China: increased partitioning to the particle phase
title_full Gas–particle partitioning of polyol tracers at a suburban site in Nanjing, east China: increased partitioning to the particle phase
title_fullStr Gas–particle partitioning of polyol tracers at a suburban site in Nanjing, east China: increased partitioning to the particle phase
title_full_unstemmed Gas–particle partitioning of polyol tracers at a suburban site in Nanjing, east China: increased partitioning to the particle phase
title_sort gas–particle partitioning of polyol tracers at a suburban site in nanjing, east china: increased partitioning to the particle phase
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2021-08-01
description <p>Gas–particle partitioning of water-soluble organic compounds plays a significant role in influencing the formation, transport, and lifetime of organic aerosols in the atmosphere, but is poorly characterized. In this work, gas- and particle-phase concentrations of isoprene oxidation products (C5-alkene triols and 2-methylterols), levoglucosan, and sugar polyols were measured simultaneously at a suburban site of the western Yangtze River Delta in east China. All target polyols were primarily distributed into the particle phase (85.9 %–99.8 %). Given the uncertainties in measurements and vapor pressure predictions, a dependence of particle-phase fractions on vapor pressures cannot be determined. To explore the impact of aerosol liquid water on gas–particle partitioning of polyol tracers, three partitioning schemes (<i>Cases 1–3</i>) were proposed based on equilibriums of gas vs. organic and aqueous phases in aerosols. If particulate organic matter (OM) is presumed as the only absorbing phase (Case 1), the measurement-based absorptive partitioning coefficients (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>p,OM</mtext><mi mathvariant="normal">m</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="839c752742c5b82ea1fa0b062b266767"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00001.svg" width="29pt" height="17pt" src="acp-21-12141-2021-ie00001.png"/></svg:svg></span></span>) of isoprene oxidation products and levoglucosan were more than 10 times greater than predicted values (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>p,OM</mtext><mi mathvariant="normal">t</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="4423b05b3f4afebe2e67c0544027cfbf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00002.svg" width="29pt" height="18pt" src="acp-21-12141-2021-ie00002.png"/></svg:svg></span></span>). The agreement between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>p,OM</mtext><mi mathvariant="normal">m</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="18b359d62f63ad6ab630447de3b46710"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00003.svg" width="29pt" height="17pt" src="acp-21-12141-2021-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>p,OM</mtext><mi mathvariant="normal">t</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="1e209707addad0aff8d29329287c62a2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00004.svg" width="29pt" height="18pt" src="acp-21-12141-2021-ie00004.png"/></svg:svg></span></span> was substantially improved when solubility in a separate aqueous phase was included, whenever water-soluble and water-insoluble OM partitioned into separate (Case 2) or single (Case 3) liquid phases, suggesting that the partitioning of polyol tracers into the aqueous phase in aerosols should not be ignored. The measurement-based effective Henry's law coefficients (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>H,e</mtext><mi mathvariant="normal">m</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="db4951c5ba2fcfce31c131e38cd83e24"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00005.svg" width="22pt" height="16pt" src="acp-21-12141-2021-ie00005.png"/></svg:svg></span></span>) of polyol tracers were orders of magnitude higher than their predicted values in pure water (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>H,w</mtext><mi mathvariant="normal">t</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="67bd1541fa6120ee87219ecb68354005"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00006.svg" width="23pt" height="17pt" src="acp-21-12141-2021-ie00006.png"/></svg:svg></span></span>). Due to the moderate correlations between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>log⁡</mi><mo>(</mo><msubsup><mi>K</mi><mtext>H,e</mtext><mi mathvariant="normal">m</mi></msubsup><mo>/</mo><msubsup><mi>K</mi><mtext>H,w</mtext><mi mathvariant="normal">t</mi></msubsup><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="72pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="ff14261d7a38425034358933b47c8acc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00007.svg" width="72pt" height="17pt" src="acp-21-12141-2021-ie00007.png"/></svg:svg></span></span> and molality of sulfate ions, the gap between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>H,e</mtext><mi mathvariant="normal">m</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="265ff29ee47d340ffe8338c1ad329248"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00008.svg" width="22pt" height="16pt" src="acp-21-12141-2021-ie00008.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>H,w</mtext><mi mathvariant="normal">t</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="2e7f39e0482472d06eb2c50911196387"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00009.svg" width="23pt" height="17pt" src="acp-21-12141-2021-ie00009.png"/></svg:svg></span></span> of polyol tracers could not be fully parameterized by the equation defining “salting-in” effects and might be ascribed to mechanisms of reactive uptake, aqueous phase reaction, “like-dissolves-like” principle, etc. These study results also partly reveal the discrepancy between observation and modeling of organic aerosols.</p>
url https://acp.copernicus.org/articles/21/12141/2021/acp-21-12141-2021.pdf
work_keys_str_mv AT cqin gasparticlepartitioningofpolyoltracersatasuburbansiteinnanjingeastchinaincreasedpartitioningtotheparticlephase
AT ygou gasparticlepartitioningofpolyoltracersatasuburbansiteinnanjingeastchinaincreasedpartitioningtotheparticlephase
AT ywang gasparticlepartitioningofpolyoltracersatasuburbansiteinnanjingeastchinaincreasedpartitioningtotheparticlephase
AT ymao gasparticlepartitioningofpolyoltracersatasuburbansiteinnanjingeastchinaincreasedpartitioningtotheparticlephase
AT hliao gasparticlepartitioningofpolyoltracersatasuburbansiteinnanjingeastchinaincreasedpartitioningtotheparticlephase
AT qwang gasparticlepartitioningofpolyoltracersatasuburbansiteinnanjingeastchinaincreasedpartitioningtotheparticlephase
AT mxie gasparticlepartitioningofpolyoltracersatasuburbansiteinnanjingeastchinaincreasedpartitioningtotheparticlephase
_version_ 1721208465647468544
spelling doaj-b5d7a966d75541009232ce879982450b2021-08-13T11:51:30ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-08-0121121411215310.5194/acp-21-12141-2021Gas–particle partitioning of polyol tracers at a suburban site in Nanjing, east China: increased partitioning to the particle phaseC. Qin0Y. Gou1Y. Wang2Y. Mao3H. Liao4Q. Wang5M. Xie6Colleges of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, ChinaCollaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, ChinaSchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USACollaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, ChinaCollaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, ChinaState Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, ChinaCollaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China<p>Gas–particle partitioning of water-soluble organic compounds plays a significant role in influencing the formation, transport, and lifetime of organic aerosols in the atmosphere, but is poorly characterized. In this work, gas- and particle-phase concentrations of isoprene oxidation products (C5-alkene triols and 2-methylterols), levoglucosan, and sugar polyols were measured simultaneously at a suburban site of the western Yangtze River Delta in east China. All target polyols were primarily distributed into the particle phase (85.9 %–99.8 %). Given the uncertainties in measurements and vapor pressure predictions, a dependence of particle-phase fractions on vapor pressures cannot be determined. To explore the impact of aerosol liquid water on gas–particle partitioning of polyol tracers, three partitioning schemes (<i>Cases 1–3</i>) were proposed based on equilibriums of gas vs. organic and aqueous phases in aerosols. If particulate organic matter (OM) is presumed as the only absorbing phase (Case 1), the measurement-based absorptive partitioning coefficients (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>p,OM</mtext><mi mathvariant="normal">m</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="839c752742c5b82ea1fa0b062b266767"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00001.svg" width="29pt" height="17pt" src="acp-21-12141-2021-ie00001.png"/></svg:svg></span></span>) of isoprene oxidation products and levoglucosan were more than 10 times greater than predicted values (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>p,OM</mtext><mi mathvariant="normal">t</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="4423b05b3f4afebe2e67c0544027cfbf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00002.svg" width="29pt" height="18pt" src="acp-21-12141-2021-ie00002.png"/></svg:svg></span></span>). The agreement between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>p,OM</mtext><mi mathvariant="normal">m</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="18b359d62f63ad6ab630447de3b46710"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00003.svg" width="29pt" height="17pt" src="acp-21-12141-2021-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>p,OM</mtext><mi mathvariant="normal">t</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="1e209707addad0aff8d29329287c62a2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00004.svg" width="29pt" height="18pt" src="acp-21-12141-2021-ie00004.png"/></svg:svg></span></span> was substantially improved when solubility in a separate aqueous phase was included, whenever water-soluble and water-insoluble OM partitioned into separate (Case 2) or single (Case 3) liquid phases, suggesting that the partitioning of polyol tracers into the aqueous phase in aerosols should not be ignored. The measurement-based effective Henry's law coefficients (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>H,e</mtext><mi mathvariant="normal">m</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="db4951c5ba2fcfce31c131e38cd83e24"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00005.svg" width="22pt" height="16pt" src="acp-21-12141-2021-ie00005.png"/></svg:svg></span></span>) of polyol tracers were orders of magnitude higher than their predicted values in pure water (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>H,w</mtext><mi mathvariant="normal">t</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="67bd1541fa6120ee87219ecb68354005"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00006.svg" width="23pt" height="17pt" src="acp-21-12141-2021-ie00006.png"/></svg:svg></span></span>). Due to the moderate correlations between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>log⁡</mi><mo>(</mo><msubsup><mi>K</mi><mtext>H,e</mtext><mi mathvariant="normal">m</mi></msubsup><mo>/</mo><msubsup><mi>K</mi><mtext>H,w</mtext><mi mathvariant="normal">t</mi></msubsup><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="72pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="ff14261d7a38425034358933b47c8acc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00007.svg" width="72pt" height="17pt" src="acp-21-12141-2021-ie00007.png"/></svg:svg></span></span> and molality of sulfate ions, the gap between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>H,e</mtext><mi mathvariant="normal">m</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="265ff29ee47d340ffe8338c1ad329248"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00008.svg" width="22pt" height="16pt" src="acp-21-12141-2021-ie00008.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>K</mi><mtext>H,w</mtext><mi mathvariant="normal">t</mi></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="2e7f39e0482472d06eb2c50911196387"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12141-2021-ie00009.svg" width="23pt" height="17pt" src="acp-21-12141-2021-ie00009.png"/></svg:svg></span></span> of polyol tracers could not be fully parameterized by the equation defining “salting-in” effects and might be ascribed to mechanisms of reactive uptake, aqueous phase reaction, “like-dissolves-like” principle, etc. These study results also partly reveal the discrepancy between observation and modeling of organic aerosols.</p>https://acp.copernicus.org/articles/21/12141/2021/acp-21-12141-2021.pdf