Enhanced Neural Network Model for Worldwide Estimation of Weighted Mean Temperature

Precise modeling of weighted mean temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula>...

Full description

Bibliographic Details
Main Authors: Fengyang Long, Chengfa Gao, Yuxiang Yan, Jinling Wang
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/12/2405
id doaj-b619d01c7cb1465bafbd993a463a686a
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Fengyang Long
Chengfa Gao
Yuxiang Yan
Jinling Wang
spellingShingle Fengyang Long
Chengfa Gao
Yuxiang Yan
Jinling Wang
Enhanced Neural Network Model for Worldwide Estimation of Weighted Mean Temperature
Remote Sensing
weighted mean temperature
neural network technique
ensemble learning
precipitation water vapor
zenith wet delay
troposphere
author_facet Fengyang Long
Chengfa Gao
Yuxiang Yan
Jinling Wang
author_sort Fengyang Long
title Enhanced Neural Network Model for Worldwide Estimation of Weighted Mean Temperature
title_short Enhanced Neural Network Model for Worldwide Estimation of Weighted Mean Temperature
title_full Enhanced Neural Network Model for Worldwide Estimation of Weighted Mean Temperature
title_fullStr Enhanced Neural Network Model for Worldwide Estimation of Weighted Mean Temperature
title_full_unstemmed Enhanced Neural Network Model for Worldwide Estimation of Weighted Mean Temperature
title_sort enhanced neural network model for worldwide estimation of weighted mean temperature
publisher MDPI AG
series Remote Sensing
issn 2072-4292
publishDate 2021-06-01
description Precise modeling of weighted mean temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula>) is critical for realizing real-time conversion from zenith wet delay (ZWD) to precipitation water vapor (PWV) in Global Navigation Satellite System (GNSS) meteorology applications. The empirical <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> models developed by neural network techniques have been proved to have better performances on the global scale; they also have fewer model parameters and are thus easy to operate. This paper aims to further deepen the research of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> modeling with the neural network, and expand the application scope of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> models and provide global users with more solutions for the real-time acquisition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula>. An enhanced neural network <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> model (ENNTm) has been developed with the radiosonde data distributed globally. Compared with other empirical models, the ENNTm has some advanced features in both model design and model performance, Firstly, the data for modeling cover the whole troposphere rather than just near the Earth’s surface; secondly, the ensemble learning was employed to weaken the impact of sample disturbance on model performance and elaborate data preprocessing, including up-sampling and down-sampling, which was adopted to achieve better model performance on the global scale; furthermore, the ENNTm was designed to meet the requirements of three different application conditions by providing three sets of model parameters, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> estimating without measured meteorological elements, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> estimating with only measured temperature and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> estimating with both measured temperature and water vapor pressure. The validation work is carried out by using the radiosonde data of global distribution, and results show that the ENNTm has better performance compared with other competing models from different perspectives under the same application conditions, the proposed model expanded the application scope of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> estimation and provided the global users with more choices in the applications of real-time GNSS-PWV retrival.
topic weighted mean temperature
neural network technique
ensemble learning
precipitation water vapor
zenith wet delay
troposphere
url https://www.mdpi.com/2072-4292/13/12/2405
work_keys_str_mv AT fengyanglong enhancedneuralnetworkmodelforworldwideestimationofweightedmeantemperature
AT chengfagao enhancedneuralnetworkmodelforworldwideestimationofweightedmeantemperature
AT yuxiangyan enhancedneuralnetworkmodelforworldwideestimationofweightedmeantemperature
AT jinlingwang enhancedneuralnetworkmodelforworldwideestimationofweightedmeantemperature
_version_ 1721348109128171520
spelling doaj-b619d01c7cb1465bafbd993a463a686a2021-07-01T00:38:25ZengMDPI AGRemote Sensing2072-42922021-06-01132405240510.3390/rs13122405Enhanced Neural Network Model for Worldwide Estimation of Weighted Mean TemperatureFengyang Long0Chengfa Gao1Yuxiang Yan2Jinling Wang3School of Transportation, Southeast University, Nanjing 211189, ChinaSchool of Transportation, Southeast University, Nanjing 211189, ChinaSchool of Transportation, Southeast University, Nanjing 211189, ChinaSchool of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, AustraliaPrecise modeling of weighted mean temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula>) is critical for realizing real-time conversion from zenith wet delay (ZWD) to precipitation water vapor (PWV) in Global Navigation Satellite System (GNSS) meteorology applications. The empirical <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> models developed by neural network techniques have been proved to have better performances on the global scale; they also have fewer model parameters and are thus easy to operate. This paper aims to further deepen the research of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> modeling with the neural network, and expand the application scope of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> models and provide global users with more solutions for the real-time acquisition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula>. An enhanced neural network <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> model (ENNTm) has been developed with the radiosonde data distributed globally. Compared with other empirical models, the ENNTm has some advanced features in both model design and model performance, Firstly, the data for modeling cover the whole troposphere rather than just near the Earth’s surface; secondly, the ensemble learning was employed to weaken the impact of sample disturbance on model performance and elaborate data preprocessing, including up-sampling and down-sampling, which was adopted to achieve better model performance on the global scale; furthermore, the ENNTm was designed to meet the requirements of three different application conditions by providing three sets of model parameters, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> estimating without measured meteorological elements, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> estimating with only measured temperature and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> estimating with both measured temperature and water vapor pressure. The validation work is carried out by using the radiosonde data of global distribution, and results show that the ENNTm has better performance compared with other competing models from different perspectives under the same application conditions, the proposed model expanded the application scope of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula> estimation and provided the global users with more choices in the applications of real-time GNSS-PWV retrival.https://www.mdpi.com/2072-4292/13/12/2405weighted mean temperatureneural network techniqueensemble learningprecipitation water vaporzenith wet delaytroposphere