Ground Deformation and Source Geometry of the 30 October 2016 M<sub>w</sub> 6.5 Norcia Earthquake (Central Italy) Investigated Through Seismological Data, DInSAR Measurements, and Numerical Modelling

We investigate the M<sub>w</sub> 6.5 Norcia (Central Italy) earthquake by exploiting seismological data, DInSAR measurements, and a numerical modelling approach. In particular, we first retrieve the vertical component (uplift and subsidence) of the displacements affecting the hangingwall...

Full description

Bibliographic Details
Main Authors: Emanuela Valerio, Pietro Tizzani, Eugenio Carminati, Carlo Doglioni, Susi Pepe, Patrizio Petricca, Claudio De Luca, Christian Bignami, Giuseppe Solaro, Raffaele Castaldo, Vincenzo De Novellis, Riccardo Lanari
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/10/12/1901
id doaj-b6368e571be545a3b8cbbabf3d5c96a2
record_format Article
spelling doaj-b6368e571be545a3b8cbbabf3d5c96a22020-11-24T21:34:04ZengMDPI AGRemote Sensing2072-42922018-11-011012190110.3390/rs10121901rs10121901Ground Deformation and Source Geometry of the 30 October 2016 M<sub>w</sub> 6.5 Norcia Earthquake (Central Italy) Investigated Through Seismological Data, DInSAR Measurements, and Numerical ModellingEmanuela Valerio0Pietro Tizzani1Eugenio Carminati2Carlo Doglioni3Susi Pepe4Patrizio Petricca5Claudio De Luca6Christian Bignami7Giuseppe Solaro8Raffaele Castaldo9Vincenzo De Novellis10Riccardo Lanari11Dipartimento di Scienze della Terra, Sapienza Università di Roma, 00185 Rome, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, 80124 Napoli, ItalyDipartimento di Scienze della Terra, Sapienza Università di Roma, 00185 Rome, ItalyDipartimento di Scienze della Terra, Sapienza Università di Roma, 00185 Rome, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, 80124 Napoli, ItalyDipartimento di Scienze della Terra, Sapienza Università di Roma, 00185 Rome, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, 80124 Napoli, ItalyIstituto Nazionale di Geofisica e Vulcanologia (INGV), 00143 Rome, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, 80124 Napoli, ItalyIstituto per il Rilevamento Elettromagnetico dell’Ambiente, IREA-CNR, 80124 Napoli, ItalyWe investigate the M<sub>w</sub> 6.5 Norcia (Central Italy) earthquake by exploiting seismological data, DInSAR measurements, and a numerical modelling approach. In particular, we first retrieve the vertical component (uplift and subsidence) of the displacements affecting the hangingwall and the footwall blocks of the seismogenic faults identified, at depth, through the hypocenters distribution analysis. To do this, we combine the DInSAR measurements obtained from coseismic SAR data pairs collected by the ALOS-2 sensor from ascending and descending orbits. The achieved vertical deformation map displays three main deformation patterns: (i) a major subsidence that reaches the maximum value of about 98 cm near the epicentral zones nearby the town of Norcia; (ii) two smaller uplift lobes that affect both the hangingwall (reaching maximum values of about 14 cm) and the footwall blocks (reaching maximum values of about 10 cm). Starting from this evidence, we compute the rock volumes affected by uplift and subsidence phenomena, highlighting that those involved by the retrieved subsidence are characterized by significantly higher deformation values than those affected by uplift (about 14 times). In order to provide a possible interpretation of this volumetric asymmetry, we extend our analysis by applying a 2D numerical modelling approach based on the finite element method, implemented in a structural-mechanic framework, and exploiting the available geological and seismological data, and the ground deformation measurements retrieved from the multi-orbit ALOS-2 DInSAR analysis. In this case, we consider two different scenarios: the first one based on a single SW-dipping fault, the latter on a main SW-dipping fault and an antithetic zone. In this context, the model characterized by the occurrence of an antithetic zone presents the retrieved best fit coseismic surface deformation pattern. This result allows us to interpret the subsidence and uplift phenomena caused by the M<sub>w</sub> 6.5 Norcia earthquake as the result of the gravitational sliding of the hangingwall along the main fault plane and the frictional force acting in the opposite direction, consistently with the double couple fault plane mechanism.https://www.mdpi.com/2072-4292/10/12/1901Norcia earthquakeALOS-2 DInSAR measurementsseismogenic volumes computation2D finite element modelnormal faulting
collection DOAJ
language English
format Article
sources DOAJ
author Emanuela Valerio
Pietro Tizzani
Eugenio Carminati
Carlo Doglioni
Susi Pepe
Patrizio Petricca
Claudio De Luca
Christian Bignami
Giuseppe Solaro
Raffaele Castaldo
Vincenzo De Novellis
Riccardo Lanari
spellingShingle Emanuela Valerio
Pietro Tizzani
Eugenio Carminati
Carlo Doglioni
Susi Pepe
Patrizio Petricca
Claudio De Luca
Christian Bignami
Giuseppe Solaro
Raffaele Castaldo
Vincenzo De Novellis
Riccardo Lanari
Ground Deformation and Source Geometry of the 30 October 2016 M<sub>w</sub> 6.5 Norcia Earthquake (Central Italy) Investigated Through Seismological Data, DInSAR Measurements, and Numerical Modelling
Remote Sensing
Norcia earthquake
ALOS-2 DInSAR measurements
seismogenic volumes computation
2D finite element model
normal faulting
author_facet Emanuela Valerio
Pietro Tizzani
Eugenio Carminati
Carlo Doglioni
Susi Pepe
Patrizio Petricca
Claudio De Luca
Christian Bignami
Giuseppe Solaro
Raffaele Castaldo
Vincenzo De Novellis
Riccardo Lanari
author_sort Emanuela Valerio
title Ground Deformation and Source Geometry of the 30 October 2016 M<sub>w</sub> 6.5 Norcia Earthquake (Central Italy) Investigated Through Seismological Data, DInSAR Measurements, and Numerical Modelling
title_short Ground Deformation and Source Geometry of the 30 October 2016 M<sub>w</sub> 6.5 Norcia Earthquake (Central Italy) Investigated Through Seismological Data, DInSAR Measurements, and Numerical Modelling
title_full Ground Deformation and Source Geometry of the 30 October 2016 M<sub>w</sub> 6.5 Norcia Earthquake (Central Italy) Investigated Through Seismological Data, DInSAR Measurements, and Numerical Modelling
title_fullStr Ground Deformation and Source Geometry of the 30 October 2016 M<sub>w</sub> 6.5 Norcia Earthquake (Central Italy) Investigated Through Seismological Data, DInSAR Measurements, and Numerical Modelling
title_full_unstemmed Ground Deformation and Source Geometry of the 30 October 2016 M<sub>w</sub> 6.5 Norcia Earthquake (Central Italy) Investigated Through Seismological Data, DInSAR Measurements, and Numerical Modelling
title_sort ground deformation and source geometry of the 30 october 2016 m<sub>w</sub> 6.5 norcia earthquake (central italy) investigated through seismological data, dinsar measurements, and numerical modelling
publisher MDPI AG
series Remote Sensing
issn 2072-4292
publishDate 2018-11-01
description We investigate the M<sub>w</sub> 6.5 Norcia (Central Italy) earthquake by exploiting seismological data, DInSAR measurements, and a numerical modelling approach. In particular, we first retrieve the vertical component (uplift and subsidence) of the displacements affecting the hangingwall and the footwall blocks of the seismogenic faults identified, at depth, through the hypocenters distribution analysis. To do this, we combine the DInSAR measurements obtained from coseismic SAR data pairs collected by the ALOS-2 sensor from ascending and descending orbits. The achieved vertical deformation map displays three main deformation patterns: (i) a major subsidence that reaches the maximum value of about 98 cm near the epicentral zones nearby the town of Norcia; (ii) two smaller uplift lobes that affect both the hangingwall (reaching maximum values of about 14 cm) and the footwall blocks (reaching maximum values of about 10 cm). Starting from this evidence, we compute the rock volumes affected by uplift and subsidence phenomena, highlighting that those involved by the retrieved subsidence are characterized by significantly higher deformation values than those affected by uplift (about 14 times). In order to provide a possible interpretation of this volumetric asymmetry, we extend our analysis by applying a 2D numerical modelling approach based on the finite element method, implemented in a structural-mechanic framework, and exploiting the available geological and seismological data, and the ground deformation measurements retrieved from the multi-orbit ALOS-2 DInSAR analysis. In this case, we consider two different scenarios: the first one based on a single SW-dipping fault, the latter on a main SW-dipping fault and an antithetic zone. In this context, the model characterized by the occurrence of an antithetic zone presents the retrieved best fit coseismic surface deformation pattern. This result allows us to interpret the subsidence and uplift phenomena caused by the M<sub>w</sub> 6.5 Norcia earthquake as the result of the gravitational sliding of the hangingwall along the main fault plane and the frictional force acting in the opposite direction, consistently with the double couple fault plane mechanism.
topic Norcia earthquake
ALOS-2 DInSAR measurements
seismogenic volumes computation
2D finite element model
normal faulting
url https://www.mdpi.com/2072-4292/10/12/1901
work_keys_str_mv AT emanuelavalerio grounddeformationandsourcegeometryofthe30october2016msubwsub65norciaearthquakecentralitalyinvestigatedthroughseismologicaldatadinsarmeasurementsandnumericalmodelling
AT pietrotizzani grounddeformationandsourcegeometryofthe30october2016msubwsub65norciaearthquakecentralitalyinvestigatedthroughseismologicaldatadinsarmeasurementsandnumericalmodelling
AT eugeniocarminati grounddeformationandsourcegeometryofthe30october2016msubwsub65norciaearthquakecentralitalyinvestigatedthroughseismologicaldatadinsarmeasurementsandnumericalmodelling
AT carlodoglioni grounddeformationandsourcegeometryofthe30october2016msubwsub65norciaearthquakecentralitalyinvestigatedthroughseismologicaldatadinsarmeasurementsandnumericalmodelling
AT susipepe grounddeformationandsourcegeometryofthe30october2016msubwsub65norciaearthquakecentralitalyinvestigatedthroughseismologicaldatadinsarmeasurementsandnumericalmodelling
AT patriziopetricca grounddeformationandsourcegeometryofthe30october2016msubwsub65norciaearthquakecentralitalyinvestigatedthroughseismologicaldatadinsarmeasurementsandnumericalmodelling
AT claudiodeluca grounddeformationandsourcegeometryofthe30october2016msubwsub65norciaearthquakecentralitalyinvestigatedthroughseismologicaldatadinsarmeasurementsandnumericalmodelling
AT christianbignami grounddeformationandsourcegeometryofthe30october2016msubwsub65norciaearthquakecentralitalyinvestigatedthroughseismologicaldatadinsarmeasurementsandnumericalmodelling
AT giuseppesolaro grounddeformationandsourcegeometryofthe30october2016msubwsub65norciaearthquakecentralitalyinvestigatedthroughseismologicaldatadinsarmeasurementsandnumericalmodelling
AT raffaelecastaldo grounddeformationandsourcegeometryofthe30october2016msubwsub65norciaearthquakecentralitalyinvestigatedthroughseismologicaldatadinsarmeasurementsandnumericalmodelling
AT vincenzodenovellis grounddeformationandsourcegeometryofthe30october2016msubwsub65norciaearthquakecentralitalyinvestigatedthroughseismologicaldatadinsarmeasurementsandnumericalmodelling
AT riccardolanari grounddeformationandsourcegeometryofthe30october2016msubwsub65norciaearthquakecentralitalyinvestigatedthroughseismologicaldatadinsarmeasurementsandnumericalmodelling
_version_ 1725950699434409984