Distribution and ecophysiology of calanoid copepods in relation to the oxygen minimum zone in the eastern tropical atlantic.

Oxygen minimum zones (OMZs) affect distribution patterns, community structure and metabolic processes of marine organisms. Due to the prominent role of zooplankton, especially copepods, in the marine carbon cycle and the predicted intensification and expansion of OMZs, it is essential to understand...

Full description

Bibliographic Details
Main Authors: Lena Teuber, Anna Schukat, Wilhelm Hagen, Holger Auel
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3818376?pdf=render
Description
Summary:Oxygen minimum zones (OMZs) affect distribution patterns, community structure and metabolic processes of marine organisms. Due to the prominent role of zooplankton, especially copepods, in the marine carbon cycle and the predicted intensification and expansion of OMZs, it is essential to understand the effects of hypoxia on zooplankton distribution and ecophysiology. For this study, calanoid copepods were sampled from different depths (0-1800 m) at eight stations in the eastern tropical Atlantic (3 °47'N to 18 °S) during three expeditions in 2010 and 2011. Their horizontal and vertical distribution was determined and related to the extent and intensity of the OMZ, which increased from north to south with minimum O2 concentrations (12.7 µmol kg(-1)) in the southern Angola Gyre. Calanoid copepod abundance was highest in the northeastern Angola Basin and decreased towards equatorial regions as well as with increasing depth. Maximum copepod biodiversity was observed in the deep waters of the central Angola Basin. Respiration rates and enzyme activities were measured to reveal species-specific physiological adaptations. Enzyme activities of the electron transport system (ETS) and lactate dehydrogenase (LDH) served as proxies for aerobic and anaerobic metabolic activity, respectively. Mass-specific respiration rates and ETS activities decreased with depth of occurrence, consistent with vertical changes in copepod body mass and ambient temperature. Copepods of the families Eucalanidae and Metridinidae dominated within the OMZ. Several of these species showed adaptive characteristics such as lower metabolic rates, additional anaerobic activity and diel vertical migration that enable them to successfully inhabit hypoxic zones.
ISSN:1932-6203