Different transcriptional profiles of RAW264.7 infected with Mycobacterium tuberculosis H37Rv and BCG identified via deep sequencing.

BACKGROUND: The Mycobacterium tuberculosis H37Rv and BCG effects on the host cell transcriptional profile consider a main research point. In the present study the transcriptome profiling analysis of RAW264.7 either infected with Mycobacterium tuberculosis H37Rv or BCG have been reported using Solexa...

Full description

Bibliographic Details
Main Authors: Fengguang Pan, Yaya Zhao, Seng Zhu, Changjiang Sun, Liancheng Lei, Xin Feng, Wen Yu Han
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3526534?pdf=render
Description
Summary:BACKGROUND: The Mycobacterium tuberculosis H37Rv and BCG effects on the host cell transcriptional profile consider a main research point. In the present study the transcriptome profiling analysis of RAW264.7 either infected with Mycobacterium tuberculosis H37Rv or BCG have been reported using Solexa/Illumina digital gene expression (DGE). RESULTS: The DGE analysis showed 1,917 different expressed genes between the BCG and H37Rv group. In addition, approximately 5% of the transcripts appeared to be predicted genes that have never been described before. KEGG Orthology (KO) annotations showed more than 71% of these transcripts are possibly involved in approximately 210 known metabolic or signaling pathways. The gene of the 28 pathways about pathogen recognition receptors and Mycobacterium tuberculosis interaction with macrophages were analyzed using the CLUSTER 3.0 available, the Tree View tool and Gene Orthology (GO). Some genes were randomly selected to confirm their altered expression levels by quantitative real-time PCR (qRT-PCR). CONCLUSION: The present study used DGE from pathogen recognition receptors and Mycobacterium tuberculosis interaction with macrophages to understand the interplay between Mycobacterium tuberculosis and RAW264.7. Meanwhile find some important host protein which was affected by Mycobacterium tuberculosis to provide evidence for the further improvement of the present efficacy of existing Mycobacterium tuberculosis therapy and vaccine.
ISSN:1932-6203