Stark-Broadening of Ar K-Shell Lines: A Comparison between Molecular Dynamics Simulations and MERL Results

Analysis of Stark-broadened spectral line profiles is a powerful, non-intrusive diagnostic technique to extract the electron density of high-energy-density plasmas. The increasing number of applications and availability of spectroscopic measurements have stimulated new research on line broadening th...

Full description

Bibliographic Details
Main Authors: Marco A. Gigosos, Roberto C. Mancini, Juan M. Martín-González, Ricardo Florido
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Atoms
Subjects:
Online Access:https://www.mdpi.com/2218-2004/9/1/9
id doaj-b6f74bcad82b4b1cb1d06b71346c4fa4
record_format Article
spelling doaj-b6f74bcad82b4b1cb1d06b71346c4fa42021-01-26T00:00:48ZengMDPI AGAtoms2218-20042021-01-0199910.3390/atoms9010009Stark-Broadening of Ar K-Shell Lines: A Comparison between Molecular Dynamics Simulations and MERL ResultsMarco A. Gigosos0Roberto C. Mancini1Juan M. Martín-González2Ricardo Florido3Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47071 Valladolid, SpainDepartament of Physics, University of Nevada, Reno, NV 89557, USAiUNAT—Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, SpainiUNAT—Departamento de Física, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, SpainAnalysis of Stark-broadened spectral line profiles is a powerful, non-intrusive diagnostic technique to extract the electron density of high-energy-density plasmas. The increasing number of applications and availability of spectroscopic measurements have stimulated new research on line broadening theory calculations and computer simulations, and their comparison. Here, we discuss a comparative study of Stark-broadened line shapes calculated with computer simulations using non-interacting and interacting particles, and with the multi-electron radiator line shape MERL code. In particular, we focus on Ar K-shell X-ray line transitions in He- and H-like ions, i.e., He<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>α</mi></msub></semantics></math></inline-formula>, He<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>β</mi></msub></semantics></math></inline-formula> and He<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>γ</mi></msub></semantics></math></inline-formula> in He-like Ar and Ly<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>α</mi></msub></semantics></math></inline-formula>, Ly<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>β</mi></msub></semantics></math></inline-formula> and Ly<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>γ</mi></msub></semantics></math></inline-formula> in H-like Ar. These lines have been extensively used for X-ray spectroscopy of Ar-doped implosion cores in indirect- and direct-drive inertial confinement fusion (ICF) experiments. The calculations were done for electron densities ranging from <inline-formula><math display="inline"><semantics><msup><mn>10</mn><mn>23</mn></msup></semantics></math></inline-formula> to <inline-formula><math display="inline"><semantics><mrow><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>24</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula> and a representative electron temperature of 1 keV. Comparisons of electron broadening only and complete line profiles including electron and ion broadening effects, as well as Doppler, are presented. Overall, MERL line shapes are narrower than those from independent and interacting particles computer simulations performed at the same conditions. Differences come from the distinctive treatments of electron broadening and are more pronounced in <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> line transitions. We also discuss the recombination broadening mechanism that naturally emerges from molecular dynamics simulations and its influence on the line shapes. Furthermore, we assess the impact of employing either molecular dynamics or MERL line profiles on the diagnosis of core conditions in implosion experiments performed on the OMEGA laser facility.https://www.mdpi.com/2218-2004/9/1/9stark broadeningelectron broadeningrecombination broadeningsimulationsmolecular dynamics
collection DOAJ
language English
format Article
sources DOAJ
author Marco A. Gigosos
Roberto C. Mancini
Juan M. Martín-González
Ricardo Florido
spellingShingle Marco A. Gigosos
Roberto C. Mancini
Juan M. Martín-González
Ricardo Florido
Stark-Broadening of Ar K-Shell Lines: A Comparison between Molecular Dynamics Simulations and MERL Results
Atoms
stark broadening
electron broadening
recombination broadening
simulations
molecular dynamics
author_facet Marco A. Gigosos
Roberto C. Mancini
Juan M. Martín-González
Ricardo Florido
author_sort Marco A. Gigosos
title Stark-Broadening of Ar K-Shell Lines: A Comparison between Molecular Dynamics Simulations and MERL Results
title_short Stark-Broadening of Ar K-Shell Lines: A Comparison between Molecular Dynamics Simulations and MERL Results
title_full Stark-Broadening of Ar K-Shell Lines: A Comparison between Molecular Dynamics Simulations and MERL Results
title_fullStr Stark-Broadening of Ar K-Shell Lines: A Comparison between Molecular Dynamics Simulations and MERL Results
title_full_unstemmed Stark-Broadening of Ar K-Shell Lines: A Comparison between Molecular Dynamics Simulations and MERL Results
title_sort stark-broadening of ar k-shell lines: a comparison between molecular dynamics simulations and merl results
publisher MDPI AG
series Atoms
issn 2218-2004
publishDate 2021-01-01
description Analysis of Stark-broadened spectral line profiles is a powerful, non-intrusive diagnostic technique to extract the electron density of high-energy-density plasmas. The increasing number of applications and availability of spectroscopic measurements have stimulated new research on line broadening theory calculations and computer simulations, and their comparison. Here, we discuss a comparative study of Stark-broadened line shapes calculated with computer simulations using non-interacting and interacting particles, and with the multi-electron radiator line shape MERL code. In particular, we focus on Ar K-shell X-ray line transitions in He- and H-like ions, i.e., He<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>α</mi></msub></semantics></math></inline-formula>, He<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>β</mi></msub></semantics></math></inline-formula> and He<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>γ</mi></msub></semantics></math></inline-formula> in He-like Ar and Ly<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>α</mi></msub></semantics></math></inline-formula>, Ly<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>β</mi></msub></semantics></math></inline-formula> and Ly<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mi>γ</mi></msub></semantics></math></inline-formula> in H-like Ar. These lines have been extensively used for X-ray spectroscopy of Ar-doped implosion cores in indirect- and direct-drive inertial confinement fusion (ICF) experiments. The calculations were done for electron densities ranging from <inline-formula><math display="inline"><semantics><msup><mn>10</mn><mn>23</mn></msup></semantics></math></inline-formula> to <inline-formula><math display="inline"><semantics><mrow><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>24</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula> and a representative electron temperature of 1 keV. Comparisons of electron broadening only and complete line profiles including electron and ion broadening effects, as well as Doppler, are presented. Overall, MERL line shapes are narrower than those from independent and interacting particles computer simulations performed at the same conditions. Differences come from the distinctive treatments of electron broadening and are more pronounced in <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> line transitions. We also discuss the recombination broadening mechanism that naturally emerges from molecular dynamics simulations and its influence on the line shapes. Furthermore, we assess the impact of employing either molecular dynamics or MERL line profiles on the diagnosis of core conditions in implosion experiments performed on the OMEGA laser facility.
topic stark broadening
electron broadening
recombination broadening
simulations
molecular dynamics
url https://www.mdpi.com/2218-2004/9/1/9
work_keys_str_mv AT marcoagigosos starkbroadeningofarkshelllinesacomparisonbetweenmoleculardynamicssimulationsandmerlresults
AT robertocmancini starkbroadeningofarkshelllinesacomparisonbetweenmoleculardynamicssimulationsandmerlresults
AT juanmmartingonzalez starkbroadeningofarkshelllinesacomparisonbetweenmoleculardynamicssimulationsandmerlresults
AT ricardoflorido starkbroadeningofarkshelllinesacomparisonbetweenmoleculardynamicssimulationsandmerlresults
_version_ 1724323730830655488