Fertilization influence on biomass yield and nutrient uptake of sweet corn in potentially hardsetting soil under no tillage

Abstract Background Hardsetting soils are considered problem soils due to its behavior of becoming hard and unbearable to cultivate not until rewetted. Few investigations were conducted in this kind of problem soil; hence, information about biomass yield and nutrient uptake is still elusive. This st...

Full description

Bibliographic Details
Main Authors: Ronley C. Canatoy, Nonilona P. Daquiado
Format: Article
Language:English
Published: SpringerOpen 2021-03-01
Series:Bulletin of the National Research Centre
Subjects:
Online Access:https://doi.org/10.1186/s42269-021-00526-w
Description
Summary:Abstract Background Hardsetting soils are considered problem soils due to its behavior of becoming hard and unbearable to cultivate not until rewetted. Few investigations were conducted in this kind of problem soil; hence, information about biomass yield and nutrient uptake is still elusive. This study investigated the impact of potentially hardsetting soil on the biomass yield and nutrient uptake of sweet corn under no-tillage cultivation system with varying fertilization treatments. Results The application of full NPK + 1 Mg ha−1 VC increased stover and grain yield by 26–106% and 11–135%, respectively. Approximately 64% and 112% of sweet corn stover and grain yield increased when treated with full NPK. Highly significant quadratic relationship (P < 0.001) was revealed between total biomass yield and nutrient uptake of sweet corn, implying that 98–99% of the variation in total biomass could be elucidated by its nutrient uptake. Further, this indicated the suitability of nutrient uptake function that could be used as an estimate in the progression of total biomass accumulation. The application of full NPK showed statistically significant (P < 0.001) nitrogen and phosphorus use efficiency across treatments. The soil in the experimental area was a potentially hardsetting soil due to its rapid soil strength development at least 4 days from wetting. This implies that with continued use, proper soil management must be implemented like reduced tillage and organic matter application to facilitate structure formation and binding of soil particles by labile fraction in organic matter. Conclusion Application of organic amendment in combination with inorganic fertilizer could be a sustainable production strategy on sweet corn production system in potentially hardsetting soil under no tillage through enhanced nutrient uptake and biomass accumulation.
ISSN:2522-8307