A Data Forwarding Scheme Based on Delaunay Triangulation for Cyber-Physical Systems

Cyber-physical system (CPS) cooperates with physical processes, computing, communication, and control (3C) into multiple levels of information processing and operation management to streamline and fortify the operation of physical systems. Due to the unique characteristics, such as unpredictable nod...

Full description

Bibliographic Details
Main Authors: Junhai Luo, Yijun Cai, Changping Zhong
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2013/465369
Description
Summary:Cyber-physical system (CPS) cooperates with physical processes, computing, communication, and control (3C) into multiple levels of information processing and operation management to streamline and fortify the operation of physical systems. Due to the unique characteristics, such as unpredictable node mobility, low node density, lack of global information and network intermittent connectivity, an algorithm for data forwarding in CPS is a considerably difficult and challenging problem, and there is no good solution to it in existing works. In this paper, we propose a fully-fledged data forwarding algorithm tailored to the CPS environment. The proposed protocol, called data forwarding based on Delaunay triangulation (DFDT), takes into account the computational geometry based on Delaunay triangulation to form a few triangle communities according to nodes’ connectivity. Data in a community are forwarded to other nodes once a node comes into this community to increase the data delivery ratio. DFDT achieves a good performance by data gathering and sending data to other nodes with higher probability of meeting the link. An extensive simulation has been performed to validate the analytical results and to show the effectiveness of our approach compared with the three existing popular data forwarding algorithms.
ISSN:1024-123X
1563-5147