Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma Initiation

To identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1) neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/β-catenin pathway that becomes active in the context of Nf1 loss. Genetic delet...

Full description

Bibliographic Details
Main Authors: Jianqiang Wu, Vincent W. Keng, Deanna M. Patmore, Jed J. Kendall, Ami V. Patel, Edwin Jousma, Walter J. Jessen, Kwangmin Choi, Barbara R. Tschida, Kevin A.T. Silverstein, Danhua Fan, Eric B. Schwartz, James R. Fuchs, Yuanshu Zou, Mi-Ok Kim, Eva Dombi, David E. Levy, Gang Huang, Jose A. Cancelas, Anat O. Stemmer-Rachamimov, Robert J. Spinner, David A. Largaespada, Nancy Ratner
Format: Article
Language:English
Published: Elsevier 2016-03-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124716300675
id doaj-b85859bc4dea43bd98344313076ad5bb
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Jianqiang Wu
Vincent W. Keng
Deanna M. Patmore
Jed J. Kendall
Ami V. Patel
Edwin Jousma
Walter J. Jessen
Kwangmin Choi
Barbara R. Tschida
Kevin A.T. Silverstein
Danhua Fan
Eric B. Schwartz
James R. Fuchs
Yuanshu Zou
Mi-Ok Kim
Eva Dombi
David E. Levy
Gang Huang
Jose A. Cancelas
Anat O. Stemmer-Rachamimov
Robert J. Spinner
David A. Largaespada
Nancy Ratner
spellingShingle Jianqiang Wu
Vincent W. Keng
Deanna M. Patmore
Jed J. Kendall
Ami V. Patel
Edwin Jousma
Walter J. Jessen
Kwangmin Choi
Barbara R. Tschida
Kevin A.T. Silverstein
Danhua Fan
Eric B. Schwartz
James R. Fuchs
Yuanshu Zou
Mi-Ok Kim
Eva Dombi
David E. Levy
Gang Huang
Jose A. Cancelas
Anat O. Stemmer-Rachamimov
Robert J. Spinner
David A. Largaespada
Nancy Ratner
Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma Initiation
Cell Reports
author_facet Jianqiang Wu
Vincent W. Keng
Deanna M. Patmore
Jed J. Kendall
Ami V. Patel
Edwin Jousma
Walter J. Jessen
Kwangmin Choi
Barbara R. Tschida
Kevin A.T. Silverstein
Danhua Fan
Eric B. Schwartz
James R. Fuchs
Yuanshu Zou
Mi-Ok Kim
Eva Dombi
David E. Levy
Gang Huang
Jose A. Cancelas
Anat O. Stemmer-Rachamimov
Robert J. Spinner
David A. Largaespada
Nancy Ratner
author_sort Jianqiang Wu
title Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma Initiation
title_short Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma Initiation
title_full Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma Initiation
title_fullStr Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma Initiation
title_full_unstemmed Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma Initiation
title_sort insertional mutagenesis identifies a stat3/arid1b/β-catenin pathway driving neurofibroma initiation
publisher Elsevier
series Cell Reports
issn 2211-1247
publishDate 2016-03-01
description To identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1) neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/β-catenin pathway that becomes active in the context of Nf1 loss. Genetic deletion of Stat3 in Schwann cell progenitors (SCPs) and Schwann cells (SCs) prevents neurofibroma formation, decreasing SCP self-renewal and β-catenin activity. β-catenin expression rescues effects of Stat3 loss in SCPs. Importantly, P-STAT3 and β-catenin expression correlate in human neurofibromas. Mechanistically, P-Stat3 represses Gsk3β and the SWI/SNF gene Arid1b to increase β-catenin. Knockdown of Arid1b or Gsk3β in Stat3fl/fl;Nf1fl/fl;DhhCre SCPs rescues neurofibroma formation after in vivo transplantation. Stat3 represses Arid1b through histone modification in a Brg1-dependent manner, indicating that epigenetic modification plays a role in early tumorigenesis. Our data map a neural tumorigenesis pathway and support testing JAK/STAT and Wnt/β-catenin pathway inhibitors in neurofibroma therapeutic trials.
url http://www.sciencedirect.com/science/article/pii/S2211124716300675
work_keys_str_mv AT jianqiangwu insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT vincentwkeng insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT deannampatmore insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT jedjkendall insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT amivpatel insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT edwinjousma insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT walterjjessen insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT kwangminchoi insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT barbarartschida insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT kevinatsilverstein insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT danhuafan insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT ericbschwartz insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT jamesrfuchs insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT yuanshuzou insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT miokkim insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT evadombi insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT davidelevy insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT ganghuang insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT joseacancelas insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT anatostemmerrachamimov insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT robertjspinner insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT davidalargaespada insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
AT nancyratner insertionalmutagenesisidentifiesastat3arid1bbcateninpathwaydrivingneurofibromainitiation
_version_ 1725862570261217280
spelling doaj-b85859bc4dea43bd98344313076ad5bb2020-11-24T21:55:28ZengElsevierCell Reports2211-12472016-03-011481979199010.1016/j.celrep.2016.01.074Insertional Mutagenesis Identifies a STAT3/Arid1b/β-catenin Pathway Driving Neurofibroma InitiationJianqiang Wu0Vincent W. Keng1Deanna M. Patmore2Jed J. Kendall3Ami V. Patel4Edwin Jousma5Walter J. Jessen6Kwangmin Choi7Barbara R. Tschida8Kevin A.T. Silverstein9Danhua Fan10Eric B. Schwartz11James R. Fuchs12Yuanshu Zou13Mi-Ok Kim14Eva Dombi15David E. Levy16Gang Huang17Jose A. Cancelas18Anat O. Stemmer-Rachamimov19Robert J. Spinner20David A. Largaespada21Nancy Ratner22Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital University of Cincinnati, Cincinnati, OH 45229, USAMasonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USADivision of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital University of Cincinnati, Cincinnati, OH 45229, USADivision of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital University of Cincinnati, Cincinnati, OH 45229, USADivision of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital University of Cincinnati, Cincinnati, OH 45229, USADivision of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital University of Cincinnati, Cincinnati, OH 45229, USADivision of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital University of Cincinnati, Cincinnati, OH 45229, USADivision of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital University of Cincinnati, Cincinnati, OH 45229, USAMasonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USABiostatistics and Informatics, University of Minnesota, Minneapolis, MN 55455, USABiostatistics and Informatics, University of Minnesota, Minneapolis, MN 55455, USAOhio State University, College of Pharmacy, Columbus, OH 43210, USAOhio State University, College of Pharmacy, Columbus, OH 43210, USADivision of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital University of Cincinnati, Cincinnati, OH 45229, USADivision of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati Children’s Hospital University of Cincinnati, Cincinnati, OH 45229, USAPediatric Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USADepartment of Pathology and New York University Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USADivision of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital University of Cincinnati, Cincinnati, OH 45229, USADivision of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital University of Cincinnati, Cincinnati, OH 45229, USADepartment of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USADepartment of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USAMasonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USADivision of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital University of Cincinnati, Cincinnati, OH 45229, USATo identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1) neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/β-catenin pathway that becomes active in the context of Nf1 loss. Genetic deletion of Stat3 in Schwann cell progenitors (SCPs) and Schwann cells (SCs) prevents neurofibroma formation, decreasing SCP self-renewal and β-catenin activity. β-catenin expression rescues effects of Stat3 loss in SCPs. Importantly, P-STAT3 and β-catenin expression correlate in human neurofibromas. Mechanistically, P-Stat3 represses Gsk3β and the SWI/SNF gene Arid1b to increase β-catenin. Knockdown of Arid1b or Gsk3β in Stat3fl/fl;Nf1fl/fl;DhhCre SCPs rescues neurofibroma formation after in vivo transplantation. Stat3 represses Arid1b through histone modification in a Brg1-dependent manner, indicating that epigenetic modification plays a role in early tumorigenesis. Our data map a neural tumorigenesis pathway and support testing JAK/STAT and Wnt/β-catenin pathway inhibitors in neurofibroma therapeutic trials.http://www.sciencedirect.com/science/article/pii/S2211124716300675